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PROBLEM 1. Since the class of instantaneous codewords is a subset of the class of uniquely
decodable codewords, it follows that M, < M;. On the other hand, let {l;} be the code-
word lengths of the uniquely decodable code for which M = M,. Since {l;} satisfies the
Kraft’s inequality, there exists an instantaneous code with these codeword lengths. For
this instantaneous code M = M, and we see that M; < M = M,, and we conclude that
M1 = Mg.

PROBLEM 2.

(a) {00,01,100,101,1100,1101,1110,1111}.

(b) First note that if any two number differ by 27%, their binary expansion will differ
somewhere in the first k bits after the ‘point’. (Think of the decimal case: if a =
0.375... and b differs by more than 1072 by it, then b’s expansion cannot start with
0.375.)

Next observe that that for ¢ > j
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So, the binary expansion of ); and ; must differ somewhere in the first /; bits. Since
codewords for ¢ and j are at least [; bits long, neither codeword can be a prefix of
the other.

The bound on the average codeword length follows from
—log, P(a;) < l; < —logy P(a;) + 1.
This method of coding is also known as Shannon coding and predates Huffman coding.
PROBLEM 3.

(a) Consider the longest and the shortest codewords. We know that there are at least
two longest codewords, suppose their length is [. Suppose the shortest codewords has
length s. Suppose that s and [ differ by 2 or more. To show that this cannot be the
case for an optimal code, consider the transformation shown below:
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We see that the transformation decreases the length of two codewords (for letters /3
and v) by [ — (s +1) = [ — s — 1, whereas it increases the length of one codeword
(for the letter a) by (I —1) —s =1—s—1. But since l —s —1 > 0, and since all the
codewords are equally likely, this would have decreased the average codeword length,
contradicting the optimality of the Huffman code. Thus, the longest and shortest
codeword lengths can differ by at most 1, and these lengths must be j and j + 1.
(If some other two consecutive depths were used we would either not have enough
leaves, or have too many leaves).

(b) Let the number of codewords of length k be my, k& = j,7 + 1. Since the Huffman
procedure yields a complete tree (no leaf is unoccupied) all intermediate nodes have
two children. Thus, the 2/ nodes at level j of the tree are either codewords (m; of
them) or each of their two children are codewords (m;41/2 of them). Thus

mj +mj/2 =2,
and also m; + m;y1 = 227. From these two equations we find
mj=(2—-2)2 and m; = (z—1)27"
(¢) By the result of (b) the average codeword length is
im; + (G + Dmyia] /(22) = j +2(x — 1) /.

PROBLEM 4. An optimal set of codewords for the the two sources are as follows:

Source | Source 11
Binary | Ternary || Binary | Ternary
00 0 00 0
01 10 01 1
100 11 100 21
101 12 101 20
110 20 110 220
111 21 1110 221

1111 222

with average codeword lengths 2.5, 1.7, 2.55, 1.65 digits/symbol, in the order the codes
appear in the table.

Note that for the ternary code for Source I, we need to add to the symbols of the source
an extra symbol of probability zero so that the number of symbols equal 1 modulo D — 1.

PROBLEM 5.
(a) Let p = P(a1), thus P(as) = P(as) = P(as)

tion (see figure below) we must have p > 2(1
ny = 1.

(1 —p)/3. By the Huffman construc-
—p)/3, i.e.,, ¢ = 2/5 in order to have
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(b) With P(a;) = g, the figure below illustrates that a Huffman code exists with n; > 1.
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(¢) & (d) For K = 2, n; is always 1. For K = 3, n; = 1 is guaranteed by P(a;) > P(az) >
P(a3). Now take K > 4 and assume P(ay) > 2/5 and P(a;) > P(ag) > --- > P(ak).
The Huffman procedure will combine ax_; and ax to obtain a super-symbol with

probability

P((IK_1> + P(CLK) < 2[{3/5

<2/5.
B <o
Thus, in the reduced ensemble a; is still the most likely element. Repeating the
argument until K = 3, we see that P(a;) > g guarantees n; = 1 in all cases.

(e) For K < 3 no such ¢ exists. For K > 3, we claim ¢ = 1/3. Assume a; remains
unpaired until the 2nd to last stage (otherwise there is nothing to prove). At this
stage we have three nodes, and P(a;) < ¢’ must be strictly less than one of the other
two (otherwise all three would have been less than 1/3). Thus a; will be combined
with one of them, leading to n; > 1.

PROBLEM 6.

(a) Since the lengths prescribed satisfy the Kraft inequality, an instantaneous code can
be used for the final stage of encoding the intermediate digits to binary codewords.
In this case, each stage of the encoding is uniquely decodable, and thus the overall
code is uniquely decodable.

(b) The indicated source sequences have probabilities 0.1, (0.9)(0.1), (0.9)%(0.1), (0.9)3(0.1),
..,(0.9)7(0.1), (0.9)%. Thus,

N =) i(0.1)(0.9)"! 4+ 8(0.9)° = 5.6953.
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M =1(0.9)® + 4[1 — (0.9)%] = 2.7086.

(d) Let N(i) be the number of source digits giving rise to the first ¢ intermediate digits.
For any ¢ > 0
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Similarly, let M (i) be the number of encoded bits corresponding the the first ¢ inter-

mediate digits. Then
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From this, we see that for any € > 0,
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and that for a long source sequence the number of encoded bits per source digit will
be M /N = 0.4756.

The average length of the Huffman code encoding 4 source digits at a time is 1.9702,
yielding 1.9702/4 = 0.49255 encoded bits per source digit.

For those of you puzzled by the fact that the ‘optimum’ Huffman code gives a worse
result for this source than the run-length coding technique, observe that the Huffman
code is the optimal solution to a mathematical problem with a given message set, but
the choice of a message set can be more important than the choice of code words for
a given message set.



