ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 15
Information Theory and Coding
Midterm Exam Oct. 29, 2013

3 problems, 110 points
3 hours
2 sheets (4 pages) of notes allowed

Good Luck!

Please write your name on each sheet of your answers

Please write the solution of each problem on a separate sheet

Problem 1. (35 points) Suppose we are given a source alphabet \mathcal{U} and a set of distributions $\left\{p_{\alpha}: \alpha \in A\right\}$ on \mathcal{U}. (I.e., for each $\alpha \in A, p_{\alpha}$ is a probability distribution on \mathcal{U}.)

Let $q(u)=\max _{\alpha \in A} p_{\alpha}(u)$ and $Q=\sum_{u \in \mathcal{U}} q(u)$.
(a) (5 pts) Show that there is a prefix-free code \mathcal{C} for the alphabet \mathcal{U} for which

$$
\operatorname{length}(\mathcal{C}(u))=\left\lceil\log \frac{Q}{q(u)}\right\rceil
$$

(b) (5 pts) For the code \mathcal{C} in (a), show that no matter which p_{α} is the distribution of U,

$$
E[\operatorname{length}(\mathcal{C}(U))]-H(U) \leq 1+\log Q
$$

(c) (5 pts) Show that $Q \leq|A|$.
(d) (5 pts) Suppose there is a subset B of A such that for each $u \in \mathcal{U}$

$$
\max _{\alpha \in A} p_{\alpha}(u)=\max _{\alpha \in B} p_{\alpha}(u) .
$$

Show that $Q \leq|B|$.
(e) (10 pts) Suppose $\mathcal{U}=\{0,1\}^{n}, A=[0,1]$, and for $\left(u_{1}, \ldots, u_{n}\right) \in\{0,1\}^{n}$,

$$
p_{\alpha}\left(u_{1}, \ldots, u_{n}\right)=\alpha^{k}(1-\alpha)^{n-k} \text { where } k \text { is the number of } 1 \text { 's in } u_{1}, \ldots, u_{n} .
$$

Show that $B=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\right\}$ has the property described in (d).
(f) (5 pts) Show that there is a prefix-free code $\mathcal{C}:\{0,1\}^{n} \rightarrow\{0,1\}^{*}$ for which for any i.i.d. binary random variables U_{1}, \ldots, U_{n}

$$
\frac{1}{n} E\left[\operatorname{length}\left(\mathcal{C}\left(U_{1}, \ldots, U_{n}\right)\right)\right]-H\left(U_{1}\right) \leq \frac{1}{n}[1+\log (n+1)]
$$

Problem 2. (30 points) Suppose we have a distribution p on an alphabet \mathcal{U} for which

$$
\begin{equation*}
\max _{u} p(u)<2 \min _{u} p(u) . \tag{*}
\end{equation*}
$$

(a) (5 pts) Show that every Huffman code for \mathcal{U} satisfies

$$
\max _{u} \operatorname{length}(\mathcal{C}(u))-\min _{u} \operatorname{length}(\mathcal{C}(u)) \leq 1
$$

(b) (10 pts) Replace the strict inequality in (*) by $\max _{u} p(u) \leq 2 \min _{u} p(u)$. Show that there exists a Huffman code for \mathcal{U} with

$$
\max _{u} \operatorname{length}(\mathcal{C}(u))-\min _{u} \operatorname{length}(\mathcal{C}(u)) \leq 1
$$

(c) (10 pts) Suppose we express the cardinality $|\mathcal{U}|$ of the source alphabet in the form $|\mathcal{U}|=2^{j}+r$ with $0 \leq r<2^{j}$. Show that the Huffman code for \mathcal{U} will have $2^{j}-r$ codewords of length j and $2 r$ codewords of length $j+1$.
(d) (5 pts) Show that the expected codeword length for the Huffman code equals $j+\alpha$ where α is the sum of the probabilities of the $2 r$ least likely codewords.

Problem 3. (45 pts) Suppose X, Y are random variables with joint distribution $p_{X Y}$. Suppose Alice knows (X, Y) and needs to communicate X to Bob, who already knows Y.

Consider the following method. For each y, design a Huffman code \mathcal{C}_{y} for X using the distribution p_{y} where $p_{y}(x)=p_{X \mid Y}(x \mid y)$. Alice sends Bob $\mathcal{C}_{Y}(X)$ based on her knowledge of Y and X. Note that which code she uses depends on Y.
(a) (10 pts) Show that the expected codeword length (averaged over both X and Y) satisfies

$$
H(X \mid Y) \leq E\left[\operatorname{length}\left(\mathcal{C}_{Y}(X)\right)\right] \leq H(X \mid Y)+1
$$

Suppose U_{1}, U_{2}, \ldots is a stationary source. We will encode this source by the following means.

1. Fix integers $m \geq 1$ and $k \geq 1$.
2. Use the method described above with $Y=\left(U_{1}, \ldots, U_{m}\right)$ and $X=\left(U_{m+1}, \ldots, U_{m+k}\right)$ to construct codes \mathcal{C}_{y} for each $y \in \mathcal{U}^{m}$.
3. Describe U_{1}^{m} by using a trivial code using $\lceil m \log |\mathcal{U}|\rceil$ bits.
4. Describe $X_{1}=U_{m+1}^{m+k}$ using $\mathcal{C}_{Y_{1}}$ with $Y_{1}=U_{1}^{m}$; describe $X_{2}=U_{m+k+1}^{m+2 k}$ using $\mathcal{C}_{Y_{2}}$ with $Y_{2}=U_{k+1}^{m+k} ;$ describe $X_{3}=U_{m+2 k+1}^{m+3 k}$ using $\mathcal{C}_{Y_{3}}$ with $Y_{3}=U_{k+1}^{m+k} ; \ldots$
(b) (5 pts) Explain how we can recover the source sequence from the output of this source code.
(c) (10 pts) Let L_{n} be the number of bits produced while the source coder processes the first $m+n k$ letters. Show that the expected number of bits per source letter $\rho=\lim _{n \rightarrow \infty} \frac{1}{m+n k} E\left[L_{n}\right]$ satisfies

$$
\frac{1}{k} H\left(U_{m+1}^{m+k} \mid U_{1}^{m}\right) \leq \rho \leq \frac{1}{k}\left[H\left(U_{m+1}^{m+k} \mid U_{1}^{m}\right)+1\right] .
$$

(d) (5 pts) Show that for a given $k, \frac{1}{k} H\left(U_{m+1}^{m+k} \mid U_{1}^{m}\right)$ is nonincreasing in m.
(e) (10 pts) Show that for a given $m, \frac{1}{k} H\left(U_{m+1}^{m+k} \mid U_{1}^{m}\right)$ is nonincreasing in k.
(f) (5 pts) Find the limit of $\frac{1}{m} H\left(U_{m+1}^{2 m} \mid U_{1}^{m}\right)$ in terms of the entropy rate of the process U_{1}, U_{2}, \ldots

