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Problem 1.

(a) Since `(u) := length(C(u)) ≥ log Q
q(u)

, we see that∑
u

2−`(u) ≤
∑
u

q(u)/Q = 1.

Thus, the prescribed lengths satisfy Kraft’s inequality and we conclude that a prefix
code with these lengths exist.

(b) Suppose pα is the true distrubution. Since q(u) ≥ pα(u), the codeword lengths satisfy

`(u) =
⌈
log

Q

pα(u)

⌉
≤ 1 + logQ+ log

1

pα(u)

Multiplying both sides by pα(u) and summer over u gives the inequality E[length(C(U))] ≤
1 + logQ+H(U).

(c) Observe that q(u) = maxα∈A pα(u) ≤
∑

α∈A pα(u). Thus

Q =
∑
u

q(u) ≤
∑
α∈A

∑
u

pα(u) =
∑
α∈A

1 = |A|.

(d) By the hypothesis of the problem q(u) = maxα∈B pα(u). Repeating the computation
in (c) gives Q ≤ |B|.

(e) We claim that when we maximize f(α) = αk(1− α)n−k over the choice of α ∈ [0, 1],
the maximum occurs at α = k/n which is an element of B: to see this, note that we
may equivalently maximize ln f(α) = k lnα+ (n−k) ln(1−α), by setting d

dα
log f(α)

to zero. This yields
k

α
=
n− k
1− α

from which we find α = k/n as the maximizer.

Thus, for any (u1, . . . , un), maxα∈A pα(u1, . . . , un) equals maxα∈B pα(u1, . . . , un).

(f) With α = Pr(U1 = 1), pα in (e) is the distribution of i.i.d. binary random variables
U1, . . . , Un. Using (b), we see that there is a code C for (U1, . . . , Un) for which

E[length(C(U1, . . . , Un)]−H(U1, . . . , Un) ≤ 1 + logQ. (∗)

By (d), Q ≤ |B| = (n + 1). Also H(U1, . . . , Un) = nH(U1). Dividing both sides of
(∗) by n yields the desired conclusion.



Problem 2.

(a) Let `max = maxu length(C(u)) be the length of the longest codeword, and `min =
minu length(C(u)) be the length of the shortest codeword. In a Huffman code there
are (at least) two sibling codewords of longest length, let u1 and u2 be corresponding
letters and w0 and w1 the corresponding codewords; let u3 be a letter assigned the
shortest codeword, let v be the corresponding codeword. We can now construct a
new prefix-free code that assigns to u3 the codeword w and assigns to u1 and u2 the
codewords v0 and v1.

Set d := `max− `min. We will show that d ≤ 1 by contradiction. Accordingly, suppose
d > 1. Then, in the new code, the codewords of u1 and u2 have become shorter by
d − 1 bits and codeword of u3 will have become longer by d − 1 bits. The expected
length has thus change by (d− 1)[p(u3)− p(u1)− p(u2)]. As

p(u3) ≤ max
u

p(u) < 2 min
u
p(u) ≤ p(u1) + p(u2),

the new code has a strictly smaller expected length, contradicting the optimality of
the Huffman code.

(b) If the inequality in (∗) is not strict, then the argument in (a) shows that if d > 1,
then, the new code has smaller or equal expected length (and thus is also optimal),
but at the same time, has fewer (perhaps zero) codewords of lengths `max or `min.
Repeating the reduction in (a) until no such codewords remain shows that there
exists an optimal (and thus Huffman) code with the desired property.

(c) By part (a) we know that the Huffman code will only have codewords of lengths k
and k + 1 for some k. Let Mk and Mk+1 be the number of such codewords. Since
the Huffman code tree is complete, we have 2Mk +Mk+1 = 2k+1. At the same time,
Mk +Mk+1 = |U| = 2j + r. These two equations yield

Mk = 2k+1 − 2j − r and Mk+1 = 2j+1 + 2r − 2k+1.

From these we find that k = j, Mj = 2j − r, Mj+1 = 2r.

(d) Since j and j + 1 are the two possible codeword lengths, the expected codeword
length equals j plus the total probability of the letters that get assigned codewords
of length j+1. By (c) we know there are 2r such letters. In an optimal code, the less
probable letters must receive codewords of longer length. Consequently, the expected
codeword length exceeds j by exactly the sum of the probabilities of 2r least likely
codewords.
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Problem 3.

(a) Since the Huffman code Cy is designed for the distribution py, where py(x) = p(x|y),
its expected length satisfies∑

x

py(x) log
1

py(x)
≤

∑
x

py(x) length(Cy(x)) ≤
∑
x

py(x) log
1

py(x)
+ 1.

Multipying all sides by p(y) and summing over y we get H(Y |X) ≤ E[length(CY (X))]
≤ H(X|Y ) + 1.

(b) From the first dm log |U|e bits of the description we learn Um
1 , and thus Y1. The rest

of the description starts with a codeword of CY1 . This code being prefix free, we can
decode X1 = Um+k

m+1 . From Y1 and X1 we know Um+k
1 , in particular Y2. Knowing Y2 we

know that the rest of the description starts with a codeword of CY2 . This code being
prefix free, we can decode X2 = Um+2k

m+k+1. Since we already knew Um+k
1 we now know

Um+2k
1 , and thus learn Y3. Continuing in this manner, after n decoding operations

we know Um+nk
1 .

(c) Note that Ln = dm log |U|e+
∑n

i=1 length(CYi(Xi)). By stationarity, (Xi, Yi) has the
same distribution as (X1, Y1), and thus

E[Ln] = dm log |U|e+ nE[length(CY1(X1))].

Dividing both sides of this equality by m + nk and taking the limit as n gets large,
we find that ρ = 0 + 1

k
E[length(CY1(X1))]. By (a), E[length(CY1(X1))] is between

H(X1|Y1) and H(X1|Y1) + 1 and thus

1

k
H(X1|Y1) ≤ ρ ≤ 1

k
[H(X1|Y1) + 1].

Noting X1 = Um+k
m+1 and Y1 = Um

1 concludes the proof.

(d) Let bk,m = 1
k
H(Um+k

m+1 |Um
1 ). We have

bk,m+1 =
1

k
H(Um+2+k

m+2 |Um+1
1 ) ≤ 1

k
H(Um+2+k

m+2 |Um+1
2 ) =

1

k
H(Um+1+k

m+1 |Um
1 ) = bk,m.

The inequality is due to “conditioning reduces entropy” and the following equality is
due to stationarity.

(e) Define am = H(Um+1|Um
1 ) = b1,m. By (d) we see that am is a non-increasing sequence,

in particular, any term is smaller than the average of any terms that preceede it,

am+k ≤
1

k
[am + · · ·+ am+k−1].

Expressing bk+1,m by the chain rule and using the inequality just shown,

bk+1,m =
1

k + 1
[am + am+1 + · · ·+ am+k−1 + am+k]

≤ 1

k + 1
[am + am+1 + · · ·+ am+k−1] +

1

k + 1

1

k
[am + am+1 + · · ·+ am+k−1]

=
1

k
[am + am+1 + · · ·+ am+k−1] = bk,m.

(f) Let HU = limm→∞
1
m
H(Um) denote the entropy rate of the process. By the chain

rule H(U2m
m+1|Hm

1 ) = H(U2m
1 )−H(Um

1 ). Thus

lim
m→∞

1

m
H(U2m

m+1|Um
1 ) = lim

m→∞

2

2m
H(U2m

1 )− lim
m→∞

1

m
H(Um

1 ) = 2HU −HU = HU .
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