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Problem 1. Let P1 and P2 be two channels of input alphabet X1 and X2 and of output
alphabet Y1 and Y2 respectively. Consider a communication scheme where the transmitter
chooses the channel (P1 or P2) to be used and where the receiver knows which channel
were used. This scheme can be formalized by the channel P of input alphabet X =
(X1 × {1}) ∪ (X2 × {2}) and of output alphabet Y = (Y1 × {1}) ∪ (Y2 × {2}), which is
defined as follows:

P (y, k′|x, k) =

{
Pk(y|x) if k′ = k,

0 otherwise.

Let X = (Xk, K) be a random variable in X which will be the input distribution to the
channel P , and let Y = (Yk, K) ∈ Y be the output distribution. Define X1 as being the
random variable in X1 obtained by conditioning Xk on K = 1. Similarly define X2, Y1 and
Y2. Let α be the probability that K = 1.

(a) Show that I(X;Y ) = h2(α) + αI(X1;Y1) + (1− α)I(X2;Y2).

(b) What is the input distribution X that achieves the capacity of P?

(c) Show that the capacity C of P satisfies 2C = 2C1 + 2C2 , where C1 and C2 are the
capacities of P1 and P2 respectively.

Problem 2. Let P (y|x) be a channel of input alphabet X and of output alphabet X , and
let p(x) be a distribution on X . Let r(x|y) be a conditional distribution on X given Y ,

i.e., for each x ∈ X and each y ∈ Y , r(x|y) ≥ 0 and
∑
x′∈X

r(x′|y) = 1. Define the functional

F (p, r) as follows:

F (p, r) =
∑
x∈X

∑
y∈Y

p(x)P (y|x) log2

r(x|y)

p(x)
.

Now for each input distribution p on X , define the conditional distribution rp as rp(x|y) =
p(x)P (y|x)∑

x′∈X p(x
′)P (y|x′)

. I.e., rp is the “true” conditional distribution of X given Y when p is

the input distribution.

(a) Use the positivity of divergence to show that for all conditional distributions r we
have F (p, r) ≤ F (p, rp) = I(X;Y ), and deduce that I(X;Y ) = max

r
F (p, r).

(b) Show that F (p, r) is strictly concave in both p and r.

The fact that the capacity C is equal to max
p

max
r
F (p, r) suggests the following algorithm

to compute the capacity of the channel P :



1. Set p0 to be uniform in X , and set k = 0.

2. Set rk = argmax
r

F (pk, r) = rpk .

3. Set pk+1 = argmax
p

F (p, rk).

4. Set k = k + 1.

5. Go to step 2.

(c) Use the Kuhn-Tucker conditions to show that pk+1(x) =
αk(x)∑

x′∈X αk(x′)
, where

log2 αk(x) =
∑
y∈Y

P (y|x) log2 rk(y|x).

This shows how to do step 3 of the algorithm.

(d) Show that C ≥ F (pk+1, rk) = log2

∑
x∈X

αk(x).

(e) Show that log2

αk(x)

pk(x)
=

∑
y∈Y

P (y|x) log2

P (y|x)∑
x′∈X P (y|x′)pk(x′)

.

(f) Let p∗ be the input distribution that achieves the capacity C of the channel P . Use
the result of homework 8 problem 4 to show that

C ≤
∑
x

p∗(x) log2

αk(x)

pk(x)
.

(g) Show that

C − F (pk+1, rk) ≤
∑
x∈X

p∗(x) log2

pk+1(x)

pk(x)
≤ max

x∈X
log2

pk+1(x)

pk(x)
.

This upper bound provides us with a stopping condition for the algorithm. I.e., we

can run the algorithm until max
x∈X

log2

pk+1(x)

pk(x)
≤ ε, where ε is some desired accuracy.

(h) Show that

n∑
k=0

(C − F (pk+1, rk)) ≤
∑
x∈X

p∗(x) log2

pn+1(x)

p0(x)
≤ log |X |.

Hint: p0 was chosen to be uniform.

(i) Deduce that the sequence F (pk+1, rk) converges to C and that the stopping condition

max
x∈X

log2

pk+1(x)

pk(x)
≤ ε is guaranteed to be met eventually.
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