ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 23
Information Theory and Coding
Homework 10 (Graded - Due on Dec. 09, 2013-3 PM)
Nov. 26, 2013

Problem 1. Let P_{1} and P_{2} be two channels of input alphabet \mathcal{X}_{1} and \mathcal{X}_{2} and of output alphabet \mathcal{Y}_{1} and \mathcal{Y}_{2} respectively. Consider a communication scheme where the transmitter chooses the channel (P_{1} or P_{2}) to be used and where the receiver knows which channel were used. This scheme can be formalized by the channel P of input alphabet $\mathcal{X}=$ $\left(\mathcal{X}_{1} \times\{1\}\right) \cup\left(\mathcal{X}_{2} \times\{2\}\right)$ and of output alphabet $\mathcal{Y}=\left(\mathcal{Y}_{1} \times\{1\}\right) \cup\left(\mathcal{Y}_{2} \times\{2\}\right)$, which is defined as follows:

$$
P\left(y, k^{\prime} \mid x, k\right)= \begin{cases}P_{k}(y \mid x) & \text { if } k^{\prime}=k \\ 0 & \text { otherwise }\end{cases}
$$

Let $X=\left(X_{k}, K\right)$ be a random variable in \mathcal{X} which will be the input distribution to the channel P, and let $Y=\left(Y_{k}, K\right) \in \mathcal{Y}$ be the output distribution. Define X_{1} as being the random variable in \mathcal{X}_{1} obtained by conditioning X_{k} on $K=1$. Similarly define X_{2}, Y_{1} and Y_{2}. Let α be the probability that $K=1$.
(a) Show that $I(X ; Y)=h_{2}(\alpha)+\alpha I\left(X_{1} ; Y_{1}\right)+(1-\alpha) I\left(X_{2} ; Y_{2}\right)$.
(b) What is the input distribution X that achieves the capacity of P ?
(c) Show that the capacity C of P satisfies $2^{C}=2^{C_{1}}+2^{C_{2}}$, where C_{1} and C_{2} are the capacities of P_{1} and P_{2} respectively.

Problem 2. Let $P(y \mid x)$ be a channel of input alphabet \mathcal{X} and of output alphabet \mathcal{X}, and let $p(x)$ be a distribution on \mathcal{X}. Let $r(x \mid y)$ be a conditional distribution on \mathcal{X} given \mathcal{Y}, i.e., for each $x \in \mathcal{X}$ and each $y \in \mathcal{Y}, r(x \mid y) \geq 0$ and $\sum_{x^{\prime} \in \mathcal{X}} r\left(x^{\prime} \mid y\right)=1$. Define the functional $F(p, r)$ as follows:

$$
F(p, r)=\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x) P(y \mid x) \log _{2} \frac{r(x \mid y)}{p(x)}
$$

Now for each input distribution p on \mathcal{X}, define the conditional distribution r_{p} as $r_{p}(x \mid y)=$ $\frac{p(x) P(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} p\left(x^{\prime}\right) P\left(y \mid x^{\prime}\right)}$. I.e., r_{p} is the "true" conditional distribution of \mathcal{X} given \mathcal{Y} when p is the input distribution.
(a) Use the positivity of divergence to show that for all conditional distributions r we have $F(p, r) \leq F\left(p, r_{p}\right)=I(X ; Y)$, and deduce that $I(X ; Y)=\max _{r} F(p, r)$.
(b) Show that $F(p, r)$ is strictly concave in both p and r.

The fact that the capacity C is equal to $\max _{p} \max _{r} F(p, r)$ suggests the following algorithm to compute the capacity of the channel P :

1. Set p_{0} to be uniform in \mathcal{X}, and set $k=0$.
2. Set $r_{k}=\underset{r}{\operatorname{argmax}} F\left(p_{k}, r\right)=r_{p_{k}}$.
3. Set $p_{k+1}=\underset{p}{\operatorname{argmax}} F\left(p, r_{k}\right)$.
4. Set $k=k+1$.
5. Go to step 2.
(c) Use the Kuhn-Tucker conditions to show that $p_{k+1}(x)=\frac{\alpha_{k}(x)}{\sum_{x^{\prime} \in \mathcal{X}} \alpha_{k}\left(x^{\prime}\right)}$, where

$$
\log _{2} \alpha_{k}(x)=\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} r_{k}(y \mid x)
$$

This shows how to do step 3 of the algorithm.
(d) Show that $C \geq F\left(p_{k+1}, r_{k}\right)=\log _{2} \sum_{x \in \mathcal{X}} \alpha_{k}(x)$.
(e) Show that $\log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)}=\sum_{y \in \mathcal{Y}} P(y \mid x) \log _{2} \frac{P(y \mid x)}{\sum_{x^{\prime} \in \mathcal{X}} P\left(y \mid x^{\prime}\right) p_{k}\left(x^{\prime}\right)}$.
(f) Let p^{*} be the input distribution that achieves the capacity C of the channel P. Use the result of homework 8 problem 4 to show that

$$
C \leq \sum_{x} p^{*}(x) \log _{2} \frac{\alpha_{k}(x)}{p_{k}(x)}
$$

(g) Show that

$$
C-F\left(p_{k+1}, r_{k}\right) \leq \sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{k+1}(x)}{p_{k}(x)} \leq \max _{x \in \mathcal{X}} \log _{2} \frac{p_{k+1}(x)}{p_{k}(x)}
$$

This upper bound provides us with a stopping condition for the algorithm. I.e., we can run the algorithm until $\max _{x \in \mathcal{X}} \log _{2} \frac{p_{k+1}(x)}{p_{k}(x)} \leq \epsilon$, where ϵ is some desired accuracy.
(h) Show that

$$
\sum_{k=0}^{n}\left(C-F\left(p_{k+1}, r_{k}\right)\right) \leq \sum_{x \in \mathcal{X}} p^{*}(x) \log _{2} \frac{p_{n+1}(x)}{p_{0}(x)} \leq \log |\mathcal{X}|
$$

Hint: p_{0} was chosen to be uniform.
(i) Deduce that the sequence $F\left(p_{k+1}, r_{k}\right)$ converges to C and that the stopping condition $\max _{x \in \mathcal{X}} \log _{2} \frac{p_{k+1}(x)}{p_{k}(x)} \leq \epsilon$ is guaranteed to be met eventually.

