ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 21
Homework 9

Information Theory and Coding
November 19, 2013

Problem 1. Let $\left\{f_{i}: \mathbb{R} \rightarrow \mathbb{R}\right\}_{1 \leq i \leq n}$ be a set of convex functions on \mathbb{R} and $c_{i} \geq 0$ for all $i \in\{1,2, \ldots, n\}$.
(a) Show that the function $f: x \mapsto \sum_{i=1}^{n} c_{i} f_{i}(x)$ is convex.
(b) Show that the function $g:\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto \sum_{i=1}^{n} c_{i} f_{i}\left(x_{i}\right)$ is convex.

Problem 2. Let $\left\{f_{i}(x)\right\}_{i \in I}$ be a set of convex real-valued functions defined over D. Assuming that $f(x)=\sup _{i \in I} f_{i}(x)$ is finite for all $x \in D$, show that $f(x)$ is convex.
Problem 3. Let $f: U \rightarrow \mathbb{R}$ be a convex function on U and assume that there exists $a, b \in \mathbb{R}$ such that $a \leq f(x) \leq b$ for all $x \in U$. Let h be an increasing convex function defined on the interval $[a, b]$. Show that the function $g=h \circ f$ is convex on U.
Problem 4. A function $f(v)$ is defined on a convex region R of a vector space. Show that $f(v)$ is convex iff the function $f\left(\lambda v_{1}+(1-\lambda) v_{2}\right)$ is a convex function of $\lambda, 0 \leq \lambda \leq 1$, for all $v_{1}, v_{2} \in R$.
Problem 5. Let \mathcal{X} and \mathcal{Y} be the input and output alphabets, respectively, of a discrete memoryless channel.
(a) Show that $H(Y)$ is a concave function of the input probability vector.

Hint: Consider the output probability vectors resulting from the input probability vectors.
(b) Give an example of a discrete memoryless channel for which the concavity of $H(Y)$ is not strict.
(c) Show that $-H(Y \mid X)$ is a linear function of the input probability vector.
(d) Combining (a) and (c), show that $I(X ; Y)$ is a concave function of the input probability vector.
Problem 6. Holder's inequality. Let $\left\{a_{i}, b_{i}\right\}_{1 \leq i \leq n}$ be a set of non-negative real numbers, $n \in \mathbb{N}$, and let $\lambda \in(0,1)$. Show that

$$
\sum_{i=1}^{n} a_{i} b_{i} \leq\left(\sum_{i=1}^{n} a_{i}^{1 / \lambda}\right)^{\lambda}\left(\sum_{i=1}^{n} b_{i}^{1 /(1-\lambda)}\right)^{1-\lambda}
$$

with equality iff there exists some c that satisfies $a_{i}^{1-\lambda}=b_{i}^{\lambda} c$ for all $i \in\{1,2, \ldots, n\}$. What is the special case $\lambda=\frac{1}{2}$?
Hint: Define

$$
Q_{i}=\frac{a_{i}^{1 / \lambda}}{\sum_{i=1}^{n} a_{i}^{1 / \lambda}}
$$

and

$$
P_{i}=\frac{b_{i}^{1 /(1-\lambda)}}{\sum_{i=1}^{n} b_{i}^{1 /(1-\lambda)}}
$$

and observe that they are non-negative numbers which sum to one. Then, use the convexity of $\lambda \mapsto \sum_{i=1}^{n} Q_{i}^{\lambda} P_{i}^{1-\lambda}$ to show $\sum_{i=1}^{n} Q_{i}^{\lambda} P_{i}^{1-\lambda} \leq 1$ with equality iff, for all $i \in\{1,2, \ldots, n\}$, $P_{i}=Q_{i}$.

