ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 17	Information Theory and Coding
Homework 7	November 5, 2013

PROBLEM 1. Consider two discrete memoryless channels. The first channel has input alphabet \mathcal{X} , output alphabet \mathcal{Y} ; the second channel has input alphabet \mathcal{Y} and output alphabet \mathcal{Z} . The first channel is described by the conditional probabilities $P_1(y|x)$ and the second channel by $P_2(z|y)$. Let the capacities of these channels be C_1 and C_2 . Consider a third memoryless channel described by probabilities

$$P_3(z|x) = \sum_{y \in \mathcal{Y}} P_2(z|y) P_1(y|x), \quad x \in \mathcal{X}, \ z \in \mathcal{Z}.$$

(a) Show that the capacity C_3 of this third channel satisfies

$$C_3 \le \min\{C_1, C_2\}.$$

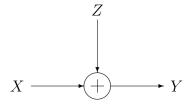
- (b) A helpful statistician preprocesses the output of the first channel by forming $\tilde{Y} = g(Y)$. He claims that this will strictly improve the capacity.
 - (b1) Show that he is wrong.
 - (b2) Under what conditions does he not strictly decrease the capacity?

PROBLEM 2. Let X be the channel input. Assume that the channel output Y is passed through a date processor in such a way that no information is lost. That is,

$$I(X;Y) = I(X;Z)$$

where Z is the processor output. Find an example where H(Y) > H(Z) and find an example where H(Y) < H(Z). Hint: The data processor does not have to be deterministic.

PROBLEM 3. Find the channel capacity of the following discrete memoryless channel:



where $\Pr\{Z=0\} = \Pr\{Z=a\} = \frac{1}{2}$ and $a \neq 0$. The alphabet for x is $\mathcal{X} = \{0,1\}$. Assume that Z is independent of X.

Observe that the channel capacity depends on the value of a.

PROBLEM 4. Consider the discrete memoryless channel $Y = X + Z \pmod{11}$, where

$$\Pr(Z = 1) = \Pr(Z = 2) = \Pr(Z = 3) = 1/3$$

and $X \in \{0, 1, \dots, 10\}$. Assume that Z is independent of X.

- (a) Find the capacity.
- (b) What is the maximizing $p^*(x)$?

PROBLEM 5. We are given a memoryless stationary binary symmetric channel BSC(ϵ). I.e, if $X_1, \ldots, X_n \in \{0, 1\}$ are the input of this channel and $Y_1, \ldots, Y_n \in \{0, 1\}$ are the output, we have:

$$P(Y_i|X_i, X^{i-1}, Y^{i-1}) = P(Y_i|X_i) = \begin{cases} 1 - \epsilon & \text{if } Y_i = X_i, \\ \epsilon & \text{otherwise.} \end{cases}$$

Let W be a random variable that is uniform in $\{0, 1\}$ and consider a communication system with feedback which transmits the value of W to the receiver as follows:

- At time t = 1, the transmitter sends $X_1 = W$ through the channel.
- At time $t = i + 1 \le n$, the transmitter gets the value of Y_i from the feedback and sends $X_{i+1} = Y_i$ through the channel.
- (a) Give the capacity C of the channel in terms of ϵ , and show that C = 0 when $\epsilon = \frac{1}{2}$.
- (b) Show that if $\epsilon = \frac{1}{2}$, $I(X^n; Y^n) = n 1$. This means that $I(X^n; Y^n) \leq nC$ does not hold for this system.
- (c) Show that although $I(X^n; Y^n) > nC$ when $\epsilon = \frac{1}{2}$, we still have $I(W; Y^n) \le nC$.

Note that since W is the useful information that is being transmitted, it is the value of $I(W; Y^n)$ that we are interested in when we want to compute the amount of information that is shared with the receiver.

PROBLEM 6. Consider a random source S of information, and let W be a random variable which represents the first L symbols U_1, \ldots, U_L of this source, i.e., $W = U_1^L$. We want to transmit the value of W using a memoryless stationary channel as follows:

- At time t = 1, we send $X_1 = f_1(W)$ through the channel.
- At time $t = i + 1 \le n$, we send $X_{i+1} = f_i(W, Y^i)$ through the channel. Y_1, \ldots, Y_i are the output of the channel at times $t = 1, \ldots, i$ respectively,

 f_1, \ldots, f_n are *n* mappings that constitute the encoder. Clearly, this is a communication system with feedback as we are using the value of Y^i in the computation of X_{i+1} .

In the previous problem, we gave an example which satisfies $I(X^n; Y^n) > nC$ and $I(W; Y^n) \leq nC$. Show that the inequality $I(W; Y^n) \leq nC$ always holds by justifying each of the following equalities and inequalities:

$$\begin{split} I(W;Y^n) &\stackrel{(a)}{=} \sum_{i=1}^n I(W;Y_i|Y^{i-1}) \stackrel{(b)}{\leq} \sum_{i=1}^n I(W,Y^{i-1};Y_i) \stackrel{(c)}{\leq} \sum_{i=1}^n I(W,X_i,X^{i-1},Y^{i-1};Y_i) \\ &\stackrel{(d)}{=} \sum_{i=1}^n I(X_i,X^{i-1},Y^{i-1};Y_i) \stackrel{(e)}{=} \sum_{i=1}^n I(X_i;Y_i) \stackrel{(f)}{\leq} nC. \end{split}$$

Since $I(W; Y^n)$ represents the amount of information that is shared with the receiver, the inequality $I(W; Y^n) \leq nC$ shows that feedback does not increase the capacity.