ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 12	Information Theory and Coding
Homework 6	October 22, 2013

PROBLEM 1. Let the alphabet be $\mathcal{X} = \{a, b\}$. Consider the infinite sequence $X_1^{\infty} = abababababababababababababa.....$

- (a) What is the compressibility of $\rho(X_1^{\infty})$ using finite-state machines (FSM) as defined in class? Justify your answer.
- (b) Design a specific FSM, call it M, with at most 4 states and as low a $\rho_{\rm M}(X_1^{\infty})$ as possible. What compressibility do you get?
- (c) Using only the result in point (a) but no specific calculations, what is the compressibility of X_1^{∞} under the Lempel-Ziv algorithm, i.e., what is $\rho_{\text{LZ}}(X_1^{\infty})$?
- (d) Re-derive your result from point (c) but this time by means of an explicit computation.

PROBLEM 2. From the notes on the Lempel-Ziv algorithm, we know that the maximum number of distinct words c a string of length n can be parsed into satisfies

$$n > c \log_K(c/K^3)$$

where K is the size of the alphabet the letters of the string belong to. This inequality lower bounds n in terms of c. We will now show that n can also be upper bounded in terms of c.

- (a) Show that, if $n \ge \frac{1}{2}m(m-1)$, then $c \ge m$.
- (b) Find a sequence for which the bound in (a) is met with equality.
- (c) Show now that $n < \frac{1}{2}c(c+1)$.