ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Problem 1. Let the alphabet be $\mathcal{X}=\{a, b\}$. Consider the infinite sequence $X_{1}^{\infty}=$ abababababababab......
(a) What is the compressibility of $\rho\left(X_{1}^{\infty}\right)$ using finite-state machines (FSM) as defined in class? Justify your answer.
(b) Design a specific FSM, call it M, with at most 4 states and as low a $\rho_{\mathrm{M}}\left(X_{1}^{\infty}\right)$ as possible. What compressibility do you get?
(c) Using only the result in point (a) but no specific calculations, what is the compressibility of X_{1}^{∞} under the Lempel-Ziv algorithm, i.e., what is $\rho_{\mathrm{LZ}}\left(X_{1}^{\infty}\right)$?
(d) Re-derive your result from point (c) but this time by means of an explicit computation.

Problem 2. From the notes on the Lempel-Ziv algorithm, we know that the maximum number of distinct words c a string of length n can be parsed into satisfies

$$
n>c \log _{K}\left(c / K^{3}\right)
$$

where K is the size of the alphabet the letters of the string belong to. This inequality lower bounds n in terms of c. We will now show that n can also be upper bounded in terms of c.
(a) Show that, if $n \geq \frac{1}{2} m(m-1)$, then $c \geq m$.
(b) Find a sequence for which the bound in (a) is met with equality.
(c) Show now that $n<\frac{1}{2} c(c+1)$.

