# ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 

School of Computer and Communication Sciences

Handout 8
Homework 4 (Graded - Due on Oct. 16, 2013-6 PM)

Information Theory and Coding
Oct. 08, 2013

Problem 1. ( 25 pts ) In this problem, we investigate what happens to the minimal average length of a code when we relax unique decodability while keeping non-singularity. Consider a random variable $U$ which takes values in $\left\{a_{1}, \ldots, a_{M}\right\}$, and consider a non-singular code for the alphabet $\left\{a_{1}, \ldots, a_{M}\right\}$ with average length $\bar{l}$. Note that a non-singular code can contain the empty string $\varnothing$ of length 0 .
(a) Show that there exist unique integers $k>0$ and $r \geq 0$ such that $M=2^{k}-1+r$ and $r<2^{k}$.
(b) Show that any non-singular code satisfies $\sum_{i} 2^{-l_{i}} \leq k+r 2^{-k} \leq\left\lceil\log _{2}(M+1)\right\rceil$, where $l_{i}$ is the length of the codeword associated to the symbol $a_{i}$.
(c) Show that any non-singular code satisfies $\bar{l} \geq H(U)-\log _{2}\left(k+r 2^{-k}\right) \geq H(U)-$ $\log _{2}\left\lceil\log _{2}(M+1)\right\rceil$.

Problem 2. ( 25 pts ) This problem explains what can be done when there is an uncertainty about the true distribution of the source. Consider a source $U$ with alphabet $\mathcal{U}=\left\{a_{1}, \ldots, a_{M}\right\}$ and suppose that we know that the true distribution of $U$ is either $P_{1}$ or $P_{2}$ but we are not sure which.
(a) Show that there is a prefix-free code where the length of the codeword associated to $a_{i}$ is $l_{i}=\left\lceil\log _{2} \frac{2}{P_{1}\left(a_{i}\right)+P_{2}\left(a_{i}\right)}\right\rceil$.
(b) Show that the average (computed using the true distribution) length $\bar{l}$ of the code constructed in (a) satisfies $H(U) \leq \bar{l}<H(U)+2$.

Now assume that the true distribution of $U$ is one of $k$ distributions $P_{1}, \ldots, P_{k}$ but we don't know which.
(c) Show that there exists a prefix-free code satisfying $H(U) \leq \bar{l}<H(U)+\log _{2} k+1$.

Problem 3. ( 30 pts ) A Huffman code is said to be maximally branched if it has at least one codeword of length $l$ for every $1 \leq l \leq l_{\max }$ where $l_{\max }$ is the length of the longest codeword.
(a) Show that a maximally branched Huffman code has exactly one codeword of length $l$ for every $1 \leq l<l_{\max }$ and exactly two codewords of length $l_{\max }$.

Now consider a source with input alphabet $\left\{a_{1}, \ldots, a_{M}\right\}$ where $P\left(a_{1}\right) \leq \ldots \leq P\left(a_{M}\right)$.
(b) Show that the source has a maximally branched Huffman code if and only if $P\left(a_{i}\right) \geq$ $\sum_{j=1}^{i-2} P\left(a_{j}\right)$ for every $3 \leq i \leq M$.
(c) Show that if $P\left(a_{i}\right)>\sum_{j=1}^{i-2} P\left(a_{j}\right)$ for every $3 \leq i \leq M$, then every Huffman code is maximally branched.
(d) Consider the particular case in which $P\left(a_{i}\right)$ is proportional to $\varphi^{i}$, where $\varphi$ is the golden ratio $\frac{1+\sqrt{5}}{2}$. Show that the source has a maximally branched Huffman code.

Problem 4. ( 20 pts ) Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be $n$ pairs of random variables which may or may not be independent. For every $i \geq 1$ and $j \leq n$, define $X_{i}^{j}$ to be the sequence $X_{i}, \ldots, X_{j}$ if $i \leq j$, and to be $\varnothing$ if $i>j$. Define $Y_{i}^{j}$ similarly. Therefore, since $X_{n+1}^{n}=Y_{1}^{0}=\varnothing$ we have $I\left(X_{n+1}^{n} ; Y_{n}\right)=I\left(Y_{1}^{0} ; X_{1}\right)=0$ and $I\left(Y_{1}^{n-1} ; X_{n} \mid X_{n+1}^{n}\right)=I\left(Y_{1}^{n-1} ; X_{n}\right)$.
(a) Show that $I\left(Y_{1}^{n-1} ; X_{n}\right)=\sum_{i=1}^{n-1} I\left(X_{n} ; Y_{i} \mid Y_{1}^{i-1}\right)$.
(b) Show that $\sum_{i=1}^{n} I\left(X_{i+1}^{n} ; Y_{i} \mid Y_{1}^{i-1}\right)=\sum_{i=1}^{n} I\left(Y_{1}^{i-1} ; X_{i} \mid X_{i+1}^{n}\right)$.

