ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 25
Information Theory and Coding
Final Exam
Jan. 23, 2013

4 problems, 125 points
180 minutes
4 sheets of notes allowed

Good Luck!

Please write your name on each sheet of your answers
Please use a separate sheet to answer each question

Problem 1. (35 points) Consider an encryption system, where the encoder and the decoder share a secret key K. The plaintext X is encrypted by the encoder to ciphertext $Y=$ $f(X, K)$ and decrypted by the decoder by computing $X=g(Y, K)$. Here f and g are deterministic functions. Let \mathcal{X}, \mathcal{Y} and \mathcal{K} denote the alphabets of X, Y and K.
(a) (5 pts) What are the values of $H(Y \mid X, K)$ and $H(X \mid Y, K)$?
(b) (5 pts) Show that $H(Y \mid K)=H(X \mid K)$.
(c) (5 pts) Assume additionally that the key K is independent of X. Show that $H(Y) \geq$ $H(X)$.
(d) (5 pts) Under the same assumption show that $H(Y \mid X) \leq H(K)$.

An encryption system is secure if $I(X ; Y)=0$, i.e., an eavesdropper who observes Y (but does not know K) learns nothing about X.
(e) (5 pts) Assume that the system is secure and suppose that K is independent of X. Show that $H(K) \geq H(X)$.
(f) (5 pts) Suppose that the functions f, g and the secret key K are chosen so that the system is secure regardless of the distribution of X (but still assuming that X and K are independent). Show that $H(K) \geq \log |\mathcal{X}|$.
(g) (5 pts) Show that for $\mathcal{X}=\mathcal{Y}=\mathcal{K}=\{0, \ldots, m-1\}$, the choice: K uniform on \mathcal{K}, $f(x, k)=(x+k) \bmod m$ and $g(y, k)=(y-k) \bmod m$ satisfies the assumptions of (f).

Problem 2. (35 points) Recall that a binary erasure channel with erasure probability p (denoted by $\operatorname{BEC}(p))$ is a channel with input alphabet $\mathcal{X}=\{0,1\}$, output alphabet $\mathcal{Y}=\{0,1, e\}$ and the following transition probabilities

$$
P(0 \mid 0)=P(1 \mid 1)=1-p, \quad P(1 \mid 0)=P(0 \mid 1)=0, \quad P(e \mid 0)=P(e \mid 1)=p .
$$

Say that an input symbol x and an output symbol y are incompatible if $P(y \mid x)=0$, i.e., if (x, y) is either $(0,1)$ or $(1,0)$. Otherwise, say that x and y are compatible. Assume throughout that $0<p<1$.
(a) (5 pts) Let X and \tilde{X} be i.i.d. with $P(X=0)=P(X=1)=1 / 2$. Suppose that X is transmitted over a $\operatorname{BEC}(p)$ and Y is the received symbol at the channel output. What is the probability that X and Y are compatible? What is the probability that \tilde{X} and Y are compatible?

Say that a sequence $\left(x_{1}, \ldots, x_{n}\right)$ of input symbols and a sequence $\left(y_{1}, \ldots, y_{n}\right)$ of output symbols are compatible if x_{i} and y_{i} are compatible for every $i=1,2, \ldots, n$.
(b) $(5 \mathrm{pts})$ Let $X_{1}, \ldots, X_{n}, X_{1}^{\prime}, \ldots, X_{n}^{\prime}$ be i.i.d. as in (a). Assume that $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$ is transmitted over a $\operatorname{BEC}(p)$ and $Y^{n}=\left(Y_{1}, \ldots, Y_{n}\right)$ is the channel output. What is the probability that X^{n} and Y^{n} are compatible? What is the probability that \tilde{X}^{n} and Y^{n} are compatible?
(c) (5 pts) Under the same assumptions as in (b), what is the probability that \tilde{X}^{n} and Y^{n} are compatible, conditioned on Y^{n} containing exactly k erasure symbols e ?

Suppose we construct a random code with M codewords of block length n

$$
X^{n}(1), \ldots, X^{n}(M)
$$

by choosing each $X_{i}(m)$, independently, each distributed as in (a). To communicate a message $m \in\{1, \ldots, M\}$, the transmitter sends $X^{n}(m)=\left(X_{1}(m), \ldots, X_{n}(m)\right)$ over a $\operatorname{BEC}(p)$. Upon receiving Y^{n}, the receiver declares $\hat{m} \in\{1, \ldots, M\}$ if \hat{m} is the only message for which $X^{n}(\hat{m})$ and Y^{n} are compatible. The receiver declares 0 if there is no such \hat{m}. Let P_{e} denote the probability that the decoder declares a value different than the message sent by the transmitter.
(d) (5 pts) Use part (b) to find an upper bound on P_{e} of the form $P_{e} \leq(M-1) \alpha(p)^{n}$.
(e) (5 pts) From (d), up to which rate R_{0} may we conclude that reliable communication over a $\operatorname{BEC}(p)$ is possible?
(f) (5 pts) Use part (c) to find an upper bound on P_{e} of the form

$$
P_{e} \leq \operatorname{Pr}\left(Y^{n} \text { contains more than } k \text { erasures }\right)+(M-1) \beta^{n-k} .
$$

[Hint: The answer to (c) is an increasing function of k.]
(g) (5 pts) From (f), up to which rate R_{1} may we conclude that reliable communication over a $\operatorname{BEC}(p)$ is possible? [Hint: Fix a $q>p$, and choose $k=n q$; then allow q to approach p.]

Problem 3. (25 points) Consider a communication channel with input (X_{1}, X_{2}) and output (A, Y), where
(i) A is a random variable independent of the channel input with $P(A=1)=p$, and $P(A=2)=1-p$.
(ii) $Y=X_{A}+Z$, where Z is a Gaussian with zero mean and variance 1 , independent of both A and Z.

In other words, the receiver observes either $X_{1}+Z$ or $X_{2}+Z$, with probabilities p and $1-p$, and also knows which of the two alternatives it has observed.

Assume that we have a power constraint of the form $E\left[X_{1}^{2}\right]+E\left[X_{2}^{2}\right] \leq 1$.
(a) (5 pts) Show that the mutual information between the input and the output is given by $I\left(X_{1}, X_{2} ; Y \mid A\right)$.
(b) (5 pts) Find $h\left(Y \mid X_{1}, X_{2}, A\right)$.
(c) (5 pts) Find an upper bound on $h(Y \mid A=1)$ in terms of $E\left[X_{1}^{2}\right]$. State the conditions for equality.
(d) (5 pts) Show that the capacity of the channel is achieved when X_{1} and X_{2} are zero mean and Gaussian. Is it necessary for them to be independent? Is it necessary for them to be jointly Gaussian?
(e) (5 pts) For Gaussian and zero mean X_{1}, X_{2}, find the mutual information between the input and the output of the channel as a function of ($p, E\left[X_{1}^{2}\right], E\left[X_{2}^{2}\right]$) and describe how to allocate the total power of 1 unit between X_{1} and X_{2} as a function of p to achieve the capacity.

Problem 4. (30 points) Suppose \mathcal{C}_{1} and \mathcal{C}_{2} are binary linear codes of blocklength n.
Denote the number of codewords of \mathcal{C}_{i} by M_{i} and the minimum distance of \mathcal{C}_{i} by d_{i}.
For $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ let $\langle\mathbf{u} \mid \mathbf{v}\rangle$ denote the concatenation of the two sequences, i.e.,

$$
\langle\mathbf{u} \mid \mathbf{v}\rangle=\left(u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}\right)
$$

Let \mathcal{C} denote the binary code of blocklength $2 n$ obrained from \mathcal{C}_{1} and \mathcal{C}_{2} as follows:

$$
\mathcal{C}=\left\{\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle: \mathbf{u} \in \mathcal{C}_{1}, \mathbf{v} \in \mathcal{C}_{2}\right\} .
$$

(a) (5 pts) Is \mathcal{C} a linear code?
(b) (5 pts) How many codewords does \mathcal{C} have? Carefully justify your answer. What is the rate R of \mathcal{C} in terms of the rates R_{1} and R_{2} of the codes \mathcal{C}_{1} and \mathcal{C}_{2} ?
(c) (5 pts) Show that the Hamming weight of $\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle$ satisfies

$$
w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle) \geq w_{H}(\mathbf{v})
$$

(d) (5 pts) Show that the Hamming weight of $\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle$ satisfies

$$
w_{H}(\langle\mathbf{u} \mid \mathbf{u} \oplus \mathbf{v}\rangle) \geq \begin{cases}w_{H}(\mathbf{v}) & \text { if } \mathbf{v} \neq \mathbf{0} \\ 2 w_{H}(\mathbf{u}) & \text { else }\end{cases}
$$

(e) (5 pts) Show that the minimum distance d of \mathcal{C} satisfies

$$
d \geq \min \left\{2 d_{1}, d_{2}\right\}
$$

(f) (5 pts) Show that $d=\min \left\{2 d_{1}, d_{2}\right\}$.

