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Problem 1.

(a) Given the dictionaries D1, D2 and the decision rule in (ii), we are sure that W will
belong to a set of words D, and b needs to be dlog |D|e. We now need to determine
how small and how large D may be. E.g., if the rule is “longer” then D is obtained
from D1 ∪D2 by removing words that are prefix of another; if the rule is “shorter” D
is obtained from D1 ∪D2 by removing words which have another word as a prefix; if
rule is “coin flip” D is equal to D1 ∪D2. Clearly, D is a subset D1 ∪D2, and may be
equal in the case of the “coin flip” rule. Thus |D| ≤ |D1|+ |D2| = 2M, (and equality
is possible when D1 and D2 are disjoint, e.g., D1 = {a, ba, bb}, D2 = {aa, ab, b}.)
On the other hand since D1 and D2 are valid, so is D: every infinite sequence U1U2 . . .
has a prefix in D. Consequently |D| is at least |U|, and equality is possible by the
example given in the hint. Thus

|U| ≤ |D| ≤ 2M

and we find dlog |U|e ≤ b ≤ 1 + dlogMe.

(b) We need to provide binary representations for D = D1∪D2, so, b = log |D1∪D2|. As
M ≤ |D1 ∪ D2| ≤ 2M , we find dlogMe ≤ b ≤ 1 + dlogMe.

(c) Since we will use b = log |D1 ∪D2| bits to describe the word no matter what decision
rule is used, to minimize bits per source letter, we need to make sure we describe as
many source letters as we can; thus we should use the “longer” rule.

(d) Using the “longer rule”, we have length(W ) ≥ length(W1). Also, from (b) we have
b < 2 + logM . Thus

b

E1[length(W )]
<

2 + logM

E1[length(W1)]
=

2

E1[length(W1)]
+

logM

E1[length(W1)]
.

Since E1[length(W1)] ≥ (logM)/H1, the first term approaches zero as M gets large.
The second term approaches H1 as M gets large, thus

b

E1[length(W )]
≤ H1 + ε

where ε can be made arbitrarily small by taking M large. The case with E2[·] and
H2 follow in analogous fashion.

Moral of the story: if two Tunstall codes are designed under different assumptions, they
can be combined into a single design that is guaranteed to perform well under either of the
assumptions.



Problem 2.

(a) We have I(W1W2;Z
n) ≤ I(Xn;Zn) ≤

∑
i I(Xi;Zi), the first by data processing,

the second by the memoryless property of the channel. Since each I(Xi;Zi) is less
than the capacity of BEC(q) and since the capacity of the BEC(q) is 1 − q, we find
I(W1W2;Z

n) ≤ n(1− q).

(b) By the chain rule I(W1W2;Z
n) = I(W2;Z

n) + I(W1;Z
n|W2) ≥ I(W1;Z

n|W2). Also
by the chain rule I(W1;Z

nW2) = I(W1;W2) + I(W1;Z
n|W2) = I(W1;Z

n|W2). Thus
I(W1;Z

nW2) ≤ I(W1W2;Z
n) ≤ n(1− q).

(c) By the chain rule I(W1W2;Z
n) = I(W1;Z

n) + I(W2;Z
n|W1). But I(W2;Z

nW1) =
I(W2;W1) + I(W2;Z

n|W1) = I(W2;Z
n|W1). Thus I(W1W2;Z

n) = I(W1;Z
n) +

I(W2;Z
nW1).

(d) The procedure is identical to the construction of a random code of rate 1
n

log(M1M2) =
R1 + R2, according to the distribution pX(0) = pX(1) = 1/2. Note that for this
distribution I(X;Y ) = 1− p.
In class we saw that the expected probability of error (i.e. the probability of wrongly
determining (W1W2) from Y n) of a random code constructed as above approaches
zero with increasing n if R1 +R2 < I(X;Y ) = 1− p.

(e) In determining W2 from (Zn,W1) we already know the value of W1, say W1 = w1. So,
all we need is to determine is which of the M2 codewords Xn(w1, 1), . . . , Xn(w1,M2)
is transmitted from the observation Zn. Since these M2 codewords form a random
code of rate R2 constructed according to the distribution pX(0) = pX(1) = 1/2, and
since I(X;Z) = 1 − q, the expected probability of error in the determination of W2

from (Zn,W1) approaches zero with increasing n if R2 < I(X;Z) = 1− q.

(f) The conditions R1 < q− p, R2 < 1− q ensure that R1 +R2 < 1− p; so from (d) and
(e) we conclude that E[∆n] and E[Θn] can both be made arbitrarily small, say, both
less than ε/2. Thus for a randomly constructed code E[∆n + Θn] < ε for sufficiently
large n, and thus there is a code with ∆n + Θn < ε. For this code both ∆n and Θn

are smaller than ε.

(g) By Fano’s inequality H(W2|ZnW1) is upper bounded by h2(pe)+pe log(M2−1) where
pe is the probability of error in determiningW2 from (Zn,W1). But log(M2−1) < nR2,
and for the code in (f) we know that pe < ε. Thus H(W2|ZnW1) ≤ nR2ε+ h2(ε).

From (c) I(W1;Z
n) = I(W1W2;Z

n)−I(W2;Z
nW1) = I(W1W2;Z

n)+H(W2|ZnW1)−
H(W2). From (a) the first term on the right hand side I(W1W2;Z

n) ≤ n(1− q); we
just upper bounded the second term, and we know H(W2) = nR2. Thus

I(W1;Z
n) ≤ n(1− q −R2) + nR2ε+ h2(ε).

(h) Given R1 < p− q, and choosing R2 = 1− q − ε we get from (f) and (g) that there is
an encoder for which

∆n < ε,
1

n
I(W1;Z

n) < R2ε+ ε+
1

n
h2(ε) < 3ε

for large enough n. As ε > 0 is arbitrary this is equivalent to what was to be shown.

Moral of the story: we can design codes up to rate q − p which let W1 to be sent reliably
to the receiver observing Y n but keep it secret from a wiretapper observing Zn.
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Problem 3.

(a) Given a code C with M codewords and blocklength n, and 0 ≤ k ≤ n, partition the
codewords into 2k groups according to their first k bits. The group with the largest
number of codewords will contain at least M ′ = dM/2ke codewords. The minimum
distance within that group is upper bounded by d0(M

′, n− k) since all codewords in
the group agree in their first k bits. Thus the minimimum distance of the code C is
upper bounded by d0(dM/2ke, n − k). Since this is true for each k ∈ {0, . . . , n} we
conclude that dmin ≤ d1(M,n).

(b) With d0(M,n) =

{
n M ≥ 2

∞ M ≤ 1
the minimum over k is obtained by choosing k as

large as possible while keeping M/2k > 1. Thus the bound d1 says “dmin ≤ n − k
when M > 2k” which is the Singleton bound we derived in class.

(c) Each pair (m,m′) contributes 1 to the sum when am = 0 and am′ = 1 or when am = 1
and am′ = 0. There are M0M1 pairs of the first type and M1M0 pairs of the second
type. Thus the sum equals 2M0M1. As M0 +M1 = M , we have M0M1 ≤M2/4, from
which the final inequality follows.

(d) As dH(xm,xm′) ≥ dmin for every m 6= m′, the first inequality follows by summing
both sides. For the second write dH(xm,xm′) =

∑n
i=1 dH(xmi, xm′i) to obtain

M∑
m=1

M∑
m′=1
m′ 6=m

dH(xm,xm′) =
n∑

i=1

M∑
m=1

M∑
m′=1
m′ 6=m

dH(xmi, xm′i).

By (c) for each i the inner double-sum is upper bounded by M2/2 and the conclusion
follows.

(e) Applying (d) gives dmin ≤ 7. Chosing k to be either of 6, 7, or 8 improves the bound
to dmin ≤ 4.

Moral of the story: any general upper bound on minimum distance should be checked to
see if it can be improved by the simple procedure in (a). The bound in (d) (together with
its improvement via (a) as done in (e)) is known as the Plotkin bound.
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