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Problem 1. Let H(p) = −p log p − (1 − p) log p denote the entropy of a binary valued
random variable with distribution p, 1− p. The entropy per symbol of the source is

H(p1) = −p1 log p1 − (1− p1) log(1− p1)

and the average symbol duration (or time per symbol) is

T (p1) = 1 · p1 + 2 · p2 = p1 + 2(1− p1) = 2− p1 = 1 + p2 .

Therefore the source entropy per unit time is

f(p1) =
H(p1)

T (p1)
=
−p1 log p1 − (1− p1) log(1− p1)

2− p1
.

Since f(0) = f(1) = 0, the maximum value of f(p1) must occur for some point p1 such
that 0 < p1 < 1 and ∂f/∂p1 = 0.

∂

∂p1

H(p1)

T (p1)
=
T (∂H /∂p1)−H(∂T/∂p1)

T 2

After some calculus, we find that the numerator of the above expression (assuming natural
logarithms) is

T (∂H/∂p1)−H(∂T/∂p1) = ln(1− p1)− 2 ln p1 ,

which is zero when 1 − p1 = p21 = p2, that is, p1 = 1
2
(
√

5 − 1) = 0.61803, the reciprocal of

the golden ratio, 1
2
(
√

5 + 1) = 1.61803. The corresponding entropy per unit time is

H(p1)

T (p1)
=
−p1 log p1 − p21 log p21

2− p1
=
−(1 + p21) log p1

1 + p21
= − log p1 = 0.69424 bits.

Problem 2.

(a) The number of 100-bit binary sequences with three or fewer ones is(
100

0

)
+

(
100

1

)
+

(
100

2

)
+

(
100

3

)
= 1 + 100 + 4950 + 161700 = 166751 .

The required codeword length is dlog2 166751e = 18. (Note that the entropy of the
source is −0.005 log2(0.005) − 0.995 log2(0.995) = 0.0454 bits, so 18 is quite a bit
larger than the 4.5 bits of entropy per 100 source letters.)

(b) The probability that a 100-bit sequence has three or fewer ones is

3∑
i=0

(
100

i

)
(0.005)i(0.995)100−i = 0.60577 + 0.30441 + 0.7572 + 0.01243 = 0.99833

Thus the probability that the sequence that is generated cannot be encoded is 1 −
0.99833 = 0.00167.



(c) In the case of a random variable Sn that is the sum of n i.i.d. random variables
X1, X2, . . . , Xn, Chebyshev’s inequality states that

Pr(|Sn − nµ| ≥ a) ≤ nσ2

a2
,

where µ and σ2 are the mean and variance of Xi. (Therefore nµ and nσ2 are the mean
and variance of Sn.) In this problem, n = 100, µ = 0.005, and σ2 = (0.005)(0.995).
Note that S100 ≥ 4 if and only if |S100 − 100(0.005)| ≥ 3.5, so we should choose
a = 3.5. Then

Pr(S100 ≥ 4) ≤ 100(0.005)(0.995)

(3.5)2
≈ 0.04061 .

This bound is much larger than the actual probability 0.00167.

Problem 3.

(a) Since the X1, . . . , Xn are i.i.d., so are q(X1), q(X2), . . . , q(Xn), and hence we can apply
the strong law of large numbers to obtain

lim− 1

n
log q(X1, . . . , Xn) = lim− 1

n

∑
log q(Xi)

= −E[log q(X)] w.p. 1

= −
∑

p(x) log q(x)

=
∑

p(x) log
p(x)

q(x)
−
∑

p(x) log p(x)

= D(p||q) +H(X).

(b) Again, by the strong law of large numbers,

lim− 1

n
log

q(X1, . . . , Xn)

p(X1, . . . , Xn)
= lim− 1

n

∑
log

q(Xi)

p(Xi)

= −E
[
log

q(X)

p(X)

]
w.p. 1

= −
∑

p(x) log
q(x)

p(x)

=
∑

p(x) log
p(x)

q(x)

= D(p||q).

Problem 4.

(a) It is easy to check that W is an i.i.d. process but Z is not. As W is i.i.d. it is also
stationary. We want to show that Z is also stationary. To show this, it is sufficient
to prove that the distribution of the process does not change by shift in the time

2



domain.

pZ(Zm = am, Zm+1 = am+1, . . . , Zm+r = am+r)

=
1

2
pX(Xm = am, Xm+1 = am+1, . . . , Xm+r = am+r)

+
1

2
pY (Ym = am, Ym+1 = am+1, . . . , Ym+r = am+r)

=
1

2
pX(Xm+s = am, Xm+s+1 = am+1, . . . , Xm+s+r = am+r)

+
1

2
pY (Ym+s = am, Ym+s+1 = am+1, . . . , Ym+s+r = am+r)

= pZ(Zm+s = am, Zm+s+1 = am+1, . . . , Zm+s+r = am+r),

where we used the stationarity of the X and Y processes. This shows the invariance of
the distribution with respect to the arbitrary shift s in time which implies stationarity.

(b) For the Z process we have

H(Z) = lim
n→∞

1

n
H(Z1, . . . , Zn)

= lim
n→∞

1

n
H(Z1, . . . , Zn|Θ)

=
1

2
H(X0) +

1

2
H(Y0) = 1.

W process is an i.i.d process with the distribution pW (a) = 1
2
pX(a) + 1

2
pY (a). From

concavity of the entropy, it is easy to see that H(W ) = H(W0) ≥ 1
2
H(X0)+ 1

2
H(Y0) =

1. Hence, the entropy rate of W is greater than the entropy rate of Z and the equality
holds if and only if X0 and Y0 have the same probability distribution function.
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