ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 9

Information Theory and Coding
Solutions to homework 4
October 16, 2012

Problem 1. Let $\mathcal{H}(p)=-p \log p-(1-p) \log p$ denote the entropy of a binary valued random variable with distribution $p, 1-p$. The entropy per symbol of the source is

$$
\mathcal{H}\left(p_{1}\right)=-p_{1} \log p_{1}-\left(1-p_{1}\right) \log \left(1-p_{1}\right)
$$

and the average symbol duration (or time per symbol) is

$$
T\left(p_{1}\right)=1 \cdot p_{1}+2 \cdot p_{2}=p_{1}+2\left(1-p_{1}\right)=2-p_{1}=1+p_{2} .
$$

Therefore the source entropy per unit time is

$$
f\left(p_{1}\right)=\frac{\mathcal{H}\left(p_{1}\right)}{T\left(p_{1}\right)}=\frac{-p_{1} \log p_{1}-\left(1-p_{1}\right) \log \left(1-p_{1}\right)}{2-p_{1}} .
$$

Since $f(0)=f(1)=0$, the maximum value of $f\left(p_{1}\right)$ must occur for some point p_{1} such that $0<p_{1}<1$ and $\partial f / \partial p_{1}=0$.

$$
\frac{\partial}{\partial p_{1}} \frac{\mathcal{H}\left(p_{1}\right)}{T\left(p_{1}\right)}=\frac{T\left(\partial \mathcal{H} / \partial p_{1}\right)-\mathcal{H}\left(\partial T / \partial p_{1}\right)}{T^{2}}
$$

After some calculus, we find that the numerator of the above expression (assuming natural logarithms) is

$$
T\left(\partial H / \partial p_{1}\right)-H\left(\partial T / \partial p_{1}\right)=\ln \left(1-p_{1}\right)-2 \ln p_{1},
$$

which is zero when $1-p_{1}=p_{1}^{2}=p_{2}$, that is, $p_{1}=\frac{1}{2}(\sqrt{5}-1)=0.61803$, the reciprocal of the golden ratio, $\frac{1}{2}(\sqrt{5}+1)=1.61803$. The corresponding entropy per unit time is

$$
\frac{\mathcal{H}\left(p_{1}\right)}{T\left(p_{1}\right)}=\frac{-p_{1} \log p_{1}-p_{1}^{2} \log p_{1}^{2}}{2-p_{1}}=\frac{-\left(1+p_{1}^{2}\right) \log p_{1}}{1+p_{1}^{2}}=-\log p_{1}=0.69424 \text { bits. }
$$

Problem 2.
(a) The number of 100 -bit binary sequences with three or fewer ones is

$$
\binom{100}{0}+\binom{100}{1}+\binom{100}{2}+\binom{100}{3}=1+100+4950+161700=166751 .
$$

The required codeword length is $\left\lceil\log _{2} 166751\right\rceil=18$. (Note that the entropy of the source is $-0.005 \log _{2}(0.005)-0.995 \log _{2}(0.995)=0.0454$ bits, so 18 is quite a bit larger than the 4.5 bits of entropy per 100 source letters.)
(b) The probability that a 100 -bit sequence has three or fewer ones is

$$
\sum_{i=0}^{3}\binom{100}{i}(0.005)^{i}(0.995)^{100-i}=0.60577+0.30441+0.7572+0.01243=0.99833
$$

Thus the probability that the sequence that is generated cannot be encoded is $1-$ $0.99833=0.00167$.
(c) In the case of a random variable S_{n} that is the sum of n i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$, Chebyshev's inequality states that

$$
\operatorname{Pr}\left(\left|S_{n}-n \mu\right| \geq a\right) \leq \frac{n \sigma^{2}}{a^{2}}
$$

where μ and σ^{2} are the mean and variance of X_{i}. (Therefore $n \mu$ and $n \sigma^{2}$ are the mean and variance of S_{n}.) In this problem, $n=100, \mu=0.005$, and $\sigma^{2}=(0.005)(0.995)$. Note that $S_{100} \geq 4$ if and only if $\left|S_{100}-100(0.005)\right| \geq 3.5$, so we should choose $a=3.5$. Then

$$
\operatorname{Pr}\left(S_{100} \geq 4\right) \leq \frac{100(0.005)(0.995)}{(3.5)^{2}} \approx 0.04061
$$

This bound is much larger than the actual probability 0.00167 .

Problem 3.

(a) Since the X_{1}, \ldots, X_{n} are i.i.d., so are $q\left(X_{1}\right), q\left(X_{2}\right), \ldots, q\left(X_{n}\right)$, and hence we can apply the strong law of large numbers to obtain

$$
\begin{aligned}
\lim -\frac{1}{n} \log q\left(X_{1}, \ldots, X_{n}\right) & =\lim -\frac{1}{n} \sum \log q\left(X_{i}\right) \\
& =-E[\log q(X)] \quad \text { w.p. } 1 \\
& =-\sum p(x) \log q(x) \\
& =\sum p(x) \log \frac{p(x)}{q(x)}-\sum p(x) \log p(x) \\
& =D(p \| q)+H(X) .
\end{aligned}
$$

(b) Again, by the strong law of large numbers,

$$
\begin{aligned}
\lim -\frac{1}{n} \log \frac{q\left(X_{1}, \ldots, X_{n}\right)}{p\left(X_{1}, \ldots, X_{n}\right)} & =\lim -\frac{1}{n} \sum \log \frac{q\left(X_{i}\right)}{p\left(X_{i}\right)} \\
& =-E\left[\log \frac{q(X)}{p(X)}\right] \quad \text { w.p. } 1 \\
& =-\sum p(x) \log \frac{q(x)}{p(x)} \\
& =\sum p(x) \log \frac{p(x)}{q(x)} \\
& =D(p \| q)
\end{aligned}
$$

Problem 4.

(a) It is easy to check that W is an i.i.d. process but Z is not. As W is i.i.d. it is also stationary. We want to show that Z is also stationary. To show this, it is sufficient to prove that the distribution of the process does not change by shift in the time
domain.

$$
\begin{aligned}
p_{Z}\left(Z_{m}=a_{m}\right. & \left., Z_{m+1}=a_{m+1}, \ldots, Z_{m+r}=a_{m+r}\right) \\
& =\frac{1}{2} p_{X}\left(X_{m}=a_{m}, X_{m+1}=a_{m+1}, \ldots, X_{m+r}=a_{m+r}\right) \\
& +\frac{1}{2} p_{Y}\left(Y_{m}=a_{m}, Y_{m+1}=a_{m+1}, \ldots, Y_{m+r}=a_{m+r}\right) \\
& =\frac{1}{2} p_{X}\left(X_{m+s}=a_{m}, X_{m+s+1}=a_{m+1}, \ldots, X_{m+s+r}=a_{m+r}\right) \\
& +\frac{1}{2} p_{Y}\left(Y_{m+s}=a_{m}, Y_{m+s+1}=a_{m+1}, \ldots, Y_{m+s+r}=a_{m+r}\right) \\
& =p_{Z}\left(Z_{m+s}=a_{m}, Z_{m+s+1}=a_{m+1}, \ldots, Z_{m+s+r}=a_{m+r}\right),
\end{aligned}
$$

where we used the stationarity of the X and Y processes. This shows the invariance of the distribution with respect to the arbitrary shift s in time which implies stationarity.
(b) For the Z process we have

$$
\begin{aligned}
H(Z) & =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(Z_{1}, \ldots, Z_{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} H\left(Z_{1}, \ldots, Z_{n} \mid \Theta\right) \\
& =\frac{1}{2} H\left(X_{0}\right)+\frac{1}{2} H\left(Y_{0}\right)=1 .
\end{aligned}
$$

W process is an i.i.d process with the distribution $p_{W}(a)=\frac{1}{2} p_{X}(a)+\frac{1}{2} p_{Y}(a)$. From concavity of the entropy, it is easy to see that $H(W)=H\left(W_{0}\right) \geq \frac{1}{2} H\left(X_{0}\right)+\frac{1}{2} H\left(Y_{0}\right)=$ 1. Hence, the entropy rate of W is greater than the entropy rate of Z and the equality holds if and only if X_{0} and Y_{0} have the same probability distribution function.

