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Problem 1. An optimal set of codewords for the the two sources are as follows:

Source I Source II
Binary Ternary Binary Ternary
00 0 00 0
01 10 01 1
100 11 100 21
101 12 101 20
110 20 110 220
111 21 1110 221

1111 222

with average codeword lengths 2.5, 1.7, 2.55, 1.65 digits/symbol, in the order the codes
appear in the table.

Note that for the ternary code for Source I, we need to add to the symbols of the source
an extra symbol of probability zero so that the number of symbols equal 1 modulo D − 1.

Problem 2.

(a) Let p = P (a1), thus P (a2) = P (a3) = P (a4) = (1− p)/3. By the Huffman construc-
tion (see figure below) we must have p > 2(1 − p)/3, i.e., q = 2/5 in order to have
n1 = 1.
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(b) With P (a1) = q, the figure below illustrates that a Huffman code exists with n1 > 1.
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(c) & (d) For K = 2, n1 is always 1. For K = 3, n1 = 1 is guaranteed by P (a1) > P (a2) ≥
P (a3). Now take K ≥ 4 and assume P (a1) > 2/5 and P (a1) > P (a2) ≥ · · · ≥ P (aK).



The Huffman procedure will combine aK−1 and aK to obtain a super-symbol with
probability

P (aK−1) + P (aK) < 2
3/5

K − 1
≤ 2/5.

Thus, in the reduced ensemble a1 is still the most likely element. Repeating the
argument until K = 3, we see that P (a1) > q guarantees n1 = 1 in all cases.

(e) For K < 3 no such q′ exists. For K ≥ 3, we claim q′ = 1/3. Assume a1 remains
unpaired until the 2nd to last stage (otherwise there is nothing to prove). At this
stage we have three nodes, and P (a1) < q′ must be strictly less than one of the other
two (otherwise all three would have been less than 1/3). Thus a1 will be combined
with one of them, leading to n1 > 1.

Problem 3.

(a) Since the lengths prescribed satisfy the Kraft inequality, an instantaneous code can
be used for the final stage of encoding the intermediate digits to binary codewords.
In this case, each stage of the encoding is uniquely decodable, and thus the overall
code is uniquely decodable.

(b) The indicated source sequences have probabilities 0.1, (0.9)(0.1), (0.9)2(0.1), (0.9)3(0.1),
. . . , (0.9)7(0.1), (0.9)8. Thus,

N̄ =
8∑

i=1

i(0.1)(0.9)i−1 + 8(0.9)8 = 5.6953.

(c)
M̄ = 1(0.9)8 + 4[1− (0.9)8] = 2.7086.

(d) Let N(i) be the number of source digits giving rise to the first i intermediate digits.
For any ε > 0

lim
i→∞

Pr
[∣∣∣N(i)

i
− N̄

∣∣∣ > ε
]

= 0.

Similarly, let M(i) be the number of encoded bits corresponding the the first i inter-
mediate digits. Then

lim
i→∞

Pr
[∣∣∣M(i)

i
− M̄

∣∣∣ > ε
]

= 0.

From this, we see that for any ε > 0,

lim
i→∞

Pr
[∣∣∣M(i)

N(i)
− M̄

N̄

∣∣∣ > ε
]

= 0,

and that for a long source sequence the number of encoded bits per source digit will
be M̄/N̄ = 0.4756.

The average length of the Huffman code encoding 4 source digits at a time is 1.9702,
yielding 1.9702/4 = 0.49255 encoded bits per source digit.

For those of you puzzled by the fact that the ‘optimum’ Huffman code gives a worse
result for this source than the run-length coding technique, observe that the Huffman
code is the optimal solution to a mathematical problem with a given message set, but
the choice of a message set can be more important than the choice of code words for
a given message set.
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Problem 4. Let X i denote X1, . . . , Xi.

(a) By the chain rule for entropy,

H(X1, X2, . . . , Xn)

n
=

∑n
i=1H(Xi|X i−1)

n
(1)

=
H(Xn|Xn−1) +

∑n−1
i=1 H(Xi|X i−1)

n
(2)

=
H(Xn|Xn−1) +H(X1, X2, . . . , Xn−1)

n
. (3)

From stationarity it follows that for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xi|X i−1),

which further implies, by summing both sides over i = 1, . . . , n − 1 and dividing by
n− 1, that,

H(Xn|Xn−1) ≤
∑n−1

i=1 H(Xi|X i−1)

n− 1
(4)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (5)

Combining (3) and (5) yields,

H(X1, X2, . . . , Xn)

n
≤ 1

n

[
H(X1, X2, . . . , Xn−1)

n− 1
+H(X1, X2, . . . , Xn−1)

]
(6)

=
H(X1, X2, . . . , Xn−1)

n− 1
. (7)

(b) By stationarity we have for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xi|X i−1),

which implies that,

H(Xn|Xn−1) =

∑n
i=1H(Xn|Xn−1)

n
(8)

≤
∑n

i=1H(Xi|X i−1)

n
(9)

=
H(X1, X2, . . . , Xn)

n
. (10)

Problem 5. For a Markov chain, given X0 and Xn are independent given Xn−1. Thus

H(X0|XnXn−1) = H(X0|Xn−1)

But, since conditioning reduces entropy,

H(X0|XnXn−1) ≤ H(X0|Xn).

Putting the above together we see that H(X0|Xn−1) ≤ H(X0|Xn).
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Problem 6.
X1, X2, . . . are i.i.d. with distribution p(x). Hence log p(Xi) are also i.i.d. and

lim(p(X1, . . . , Xn))
1
n = lim 2log(p(X1,X2,...,Xn))

1
n

= 2lim 1
n

∑
log p(Xi)

= 2E(log(p(X))) a.e.

= 2−H(X)

by the strong law of large numbers (assuming of course that H(X) exists). Note: The ab-
breviation a.e. stands for ‘almost everywhere’, which is synonymous with ‘with probability
1’.

For the second part of the problem we had intended to ask a question for which taking
limit and taking the expectation do not commute (i.e., the order you take them mat-
ters). This, however, is not the case here: Let Gn be the set of (x1, . . . , xn) for which
|p(x1, . . . , xn)1/n − 2−H(X)| < ε. We know from the first part that Pr(Gn) → 1 as n gets
large. Since 0 ≤ p(x1, . . . , xn)1/n ≤ 1 for any x1, . . . , xn, we see that

|E[p(X1, . . . , Xn)1/n]− 2−H(X)| =
∣∣∣∣ ∑
x1,...,xn

p(x1, . . . , xn)
[
p(x1, . . . , xn)1/n − 2−H(X)

]∣∣∣∣
≤

∑
x1,...,xn

p(x1, . . . , xn)
∣∣p(x1, . . . , xn)1/n − 2−H(X)

∣∣
=

∑
(x1,...,xn)∈Gn

p(x1, . . . , xn)
∣∣p(x1, . . . , xn)1/n − 2−H(X)

∣∣
+

∑
(x1,...,xn)6∈Gn

p(x1, . . . , xn)
∣∣p(x1, . . . , xn)1/n − 2−H(X)

∣∣
(a)

≤
∑

(x1,...,xn)∈Gn

p(x1, . . . , xn)ε+
∑

(x1,...,xn)6∈Gn

p(x1, . . . , xn)

= P (Gn)ε+ (1− P (Gn))

≤ ε+ (1− P (Gn)).

Where (a) follows from the definition of Gn and the fact that |p(x1, . . . , xn)1/n− 2−H | ≤ 1.
Now, as n gets large 1 − P (Gn) approaches zero, and we see that the difference between
E[p(X1, . . . , Xn)1/n] and 2−H(X) gets smaller than any arbitrary ε > 0, and thus

lim
n→∞

E[p(X1, . . . , Xn)1/n] = 2−H(X).

Problem 7.

(a) Using the chain rule for conditional entropy,

H(X, Y | Z) = H(X | Z) +H(Y | X,Z) ≥ H(X | Z),

with equality iff H(Y | X,Z) = 0, that is, when Y is a function of X and Z.

(b) Using the chain rule for mutual information,

I(X, Y ;Z) = I(X;Z) + I(Y ;Z | X) ≥ I(X;Z),

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.
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(c) Using first the chain rule for entropy and then the definition of conditional mutual
information,

H(X, Y, Z)−H(X, Y ) = H(Z | X, Y ) = H(Z | X)− I(Y ;Z | X)

≤ H(Z | X) = H(X,Z)−H(X) ,

with equality iff I(Y ;Z | X) = 0, that is, when Y and Z are conditionally independent
given X.

(d) Using the chain rule for mutual information,

I(X;Z | Y ) + I(Z;Y ) = I(X, Y ;Z) = I(Z;Y | X) + I(X;Z) ,

and therefore
I(X;Z | Y ) = I(Z;Y | X)− I(Z;Y ) + I(X;Z) .

We see that this inequality is actually an equality in all cases.
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