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Problem 1. It is clear that the input distribution that maximizes the capacity is X ∼
N (0, P ). Evaluating the mutual information for this distribution,

C2 = max I(X;Y1, Y2)

= h(Y1, Y2)− h(Y1, Y2|X)

= h(Y1, Y2)− h(Z1, Z2|X)

= h(Y1, Y2)− h(Z1, Z2)

Now since

(Z1, Z2) ∼ N
(
0,

[
N Nρ
Nρ N

])
,

we have

h(Z1, Z2) =
1

2
log(2πe)2|KZ | =

1

2
log(2πe)2N2(1− ρ2).

Since Y1 = X + Z1, and Y2 = X + Z2, we have

(Y1, Y2) ∼ N
(
0,

[
P +N P + ρN
P + ρN P +N

])
,

and

h(Y1, Y2) =
1

2
log(2πe)2|KY | =

1

2
log(2πe)2(N2(1− ρ2) + 2PN(1− ρ)).

Hence the capacity is

C2 = h(Y1, Y2)− h(Z1, Z2)

=
1

2
log

(
1 +

2P

N(1 + ρ)

)
.

(a) ρ = 1. In this case, C = 1
2

log(1+P/N), which is the capacity of a single look channel.
This is not surprising, since in this case Y1 = Y2.

(b) ρ = 0. In this case,

C =
1

2
log (1 + 2P/N) ,

which corresponds to using twice the power in a single look. The capacity is the same
as the capacity of the channel X → (Y1 + Y2).

(c) ρ = −1. In this case, C = ∞, which is not surprising since if we add Y1 and Y2, we
can recover X exactly, and so is equivanent to having a noiseless channel.

Note that the capacity of the above channel in all cases is the same as the capacity of the
channel X → Y1 + Y2. This is not true in general.



Problem 2. (a) By the water-filling solution discussed in class, it follows that we will
put all the signal power into the channel with less noise until the total power of noise
+ signal in that channel equals the noise power in the other channel. After that, we
will split any additional power evenly between the two channels.

Thus the combined channel begins to behave like a pair of parallel channels when the
signal power is equal to the difference of the two noise powers, i.e., when 2P = σ2

1−σ2
2.

(b) Since we are interested in the asymptotics P/σ2
1 −→∞ without loss of generality we

assume the waterpourring level to be greater than σ2
1. Hence Pi = λ − σ2

i , i = 1, 2.
It follows that

C1(P )− C2(P ) =
1

2
log

(
1 +

P1

σ2
1

)
+

1

2
log

(
1 +

P2

σ2
2

)
− 1

2
log

(
1 +

P

σ2
1

)
− 1

2
log

(
1 +

P

σ2
2

)
=

1

2
log

(
λ

σ2
1

)
+

1

2
log

(
λ

σ2
2

)
− 1

2
log

(
1 +

P

σ2
1

)
− 1

2
log

(
1 +

P

σ2
2

)
Now

1

2
log

(
1 +

P

σ2
1

)
=

1

2
log

(
1 +

P1

σ2
1

+
P − P1

σ2
1

)
=

1

2
log

(
λ

σ2
1

+
P − P1

σ2
1

)
and similarly

1

2
log

(
1 +

P

σ2
2

)
=

1

2
log

(
λ

σ2
2

+
P − P2

σ2
2

)
=

1

2
log

(
λ

σ2
2

− P − P1

σ2
2

)
.

We then deduce that

C1(P )− C2(P ) =
1

2
log

(
λ

σ2
1

)
+

1

2
log

(
λ

σ2
2

)
− 1

2
log

(
λ

σ2
1

+
P − P1

σ2
1

)
− 1

2
log

(
λ

σ2
2

− P − P1

σ2
2

)
= −1

2
log

(
1 +

P − P1

λ

)
− 1

2
log

(
1− P − P1

λ

)
.

We conclude by showing that P−P1

λ
tends to zero as P/σ2

1 tends to infinity. Since
Pi = λ− σ2

i , i = 1, 2, and since 2P = 2λ− σ2
1 − σ2

2, we have that

P − P1

λ
=
P − (λ− σ2

1)

λ

=
2(σ2

2 − σ2
1)

2P + σ2
1 + σ2

2

.

By assumption P/σ2
1 tends to infinity, and because σ2

2 < σ2
1, we have that

2(σ2
2−σ2

1)

2P+σ2
1+σ

2
2

tends to zero as P/σ2
1 tends to infinity. This gives the desired result.

Problem 3. (a) All rates less than 1
2

log2(1 + P
σ2 ) are achievable.

(b) The new noise Z1 − Z2 has zero mean and variance E((Z1 − Z2)
2) = 2σ2 − 2ρσ2.

Therefore, all rates less than 1
2

log2(1 + P
2(1−ρ)σ2 ) are achievable.

(c) The capacity is C = max I(X;Y1, Y2) = max(h(Y1, Y2) − h(Z1, Z2)) = 1
2

log2(1 +
P

2(1−ρ)σ2 ). This shows that the scheme used in (b) is a way to achieve capacity.
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Problem 4.

a) For all x ∈ X , since P (x∗) ≥ P (x), then log( 1
P (x)

) ≥ log( 1
P (x∗)

). Hence,

H(X) =
∑
x∈X

P (x) log(
1

P (x)
) ≥ (log(

1

P (x∗)
))
∑
x∈X

P (x) = log(
1

P (x∗)
).

b) As we have seen in class, we define

Z =

{
0, X̂ = X

1, X̂ 6= X

Then, H(X,Z|Y ) = H(X|Y ) +H(Z|X, Y ) = H(Z|Y ) +H(X|Z, Y ).
Moreover, H(Z|X, Y ) ≤ H(Z|X, g(Y ) = X̂) = 0 and H(Z|Y ) ≤ H(Pe). Therefore,

H(X|Y ) ≤ H(Pe)+H(X|Z, Y ) = H(Pe)+PeH(X|Z = 1, Y ) ≤ H(Pe)+Pe log(|X |−1).

c) Assume that x̂ = g(y) for some observation y. This means that P (x̂|y) ≥ P (x|y) for
all x ∈ X . According to part (a), H(X|Y = y) ≥ log( 1

P (x̂|y)). Combining these, we
obtain

P (x̂|y) ≥ e−H(X|Y=y).

On the other hand, Pe = P{X̂ 6= X} = 1− P{X̂ = X}. So,

Pe = 1−
∑
y∈Y

P (Y = y)P (x̂|y)

≤ 1−
∑
y∈Y

P (Y = y)e−H(X|Y=y)

≤ 1− e−
∑

y∈Y P (Y=y)H(X|Y=y)

= 1− eH(X|Y ).

where we used the hint in the last inequality.

Problem 5. This property is also known as “martingale processes have orthogonal incre-
ments”. You can show the result by using:

E[E[Xi|X i−1]] = E[Xi].

Problem 6. The − channel is also a binary symmetric channel with cross-over probability
given by ε− = 2ε− 2ε2. For the + channel, using the formula

P (y1y2u1|u2) =
1

2
P (y1|u1 ⊕ u2)P (y2|u2),
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we can compute the transition probabilities. Assume first u2 = 0, then

P (000|0) =
1

2
(1− ε)2

P (001|0) =
1

2
ε(1− ε)

P (010|0) =
1

2
(1− ε)ε

P (011|0) =
1

2
ε2

P (100|0) =
1

2
ε(1− ε)

P (101|0) =
1

2
(1− ε)2

P (111|0) =
1

2
(1− ε)ε

You can compute the result similarly for u2 = 1.
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