ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 17
Information Theory and Coding
Midterm Exam
Nov. 13, 2012

3 problems, 110 points
2 hours 45 minutes
2 sheets of notes allowed

Good Luck!

Please write your name on each sheet of your answers
Please use a separate sheet to answer each question

Problem 1. (35 points) We will consider source codes for the alphabet $\{0,1\}^{n}$.
(a) (10 pts) Show that there is a prefix-free code \mathcal{C}_{n} which assigns to each sequence $u^{n} \in\{0,1\}^{n}$ a codeword of length

$$
\left\lceil\log _{2}(n+1)+\log _{2}\binom{n}{k}\right\rceil
$$

where k is the number of 1 's in u^{n}. (Here $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ denotes the binomial coefficient.)
(b) (5 pts) Show that for any $0 \leq z \leq 1$, and for all $0 \leq k \leq n$,

$$
\binom{n}{k} \leq z^{-k}(1-z)^{-(n-k)}
$$

Hint: $1=(z+(1-z))^{n}=\sum_{i=0}^{n}\binom{n}{i} z^{i}(1-z)^{n-i}$.
(c) (10 pts) Show that

$$
\frac{1}{n} \log _{2}\binom{n}{k} \leq h_{2}(k / n)
$$

where $h_{2}(z)=-z \log _{2} z-(1-z) \log _{2}(1-z)$ is the binary entropy function.
(d) (10 pts) Show that if U_{1}, \ldots, U_{n} are i.i.d. binary random variables, with entropy $\operatorname{Pr}\left(U_{1}=1\right)=p$, then

$$
\frac{1}{n} E\left[\operatorname{length}\left(\mathcal{C}_{n}\left(U^{n}\right)\right)\right] \leq h_{2}(p)+\frac{1+\log _{2}(n+1)}{n}
$$

[Hint: h_{2} is concave \cap.]

Problem 2. (35 points) Denote the output of a stationary memoryless source with alphabet \mathcal{U} by U_{1}, U_{2}, \ldots Let p_{U} denote the common distribution of these random variables.

As always, we will encode the source into a binary representation. However, the bits 0 and 1 have possibly unequal cost; let $c(0)$ and $c(1)$ denote these costs. We will assume $c(0) \geq 0$ and $c(1) \geq 0$.

We will assume that the cost of a binary sequence $x^{n}=\left(x_{1}, \ldots, x_{n}\right)$ is given by $c\left(x^{n}\right)=$ $\sum_{i=1}^{n} c\left(x_{i}\right)$.

For $0 \leq q \leq 1$ and $\epsilon>0$, let $T_{2}(n, \epsilon, q)$ denote the set of binary sequences of length n that are ϵ-typical with respect to the distribution $P(X=0)=1-q, P(X=1)=q$.
(a) (5 pts) Show that for $x^{n} \in T_{2}(n, \epsilon, q)$, we have

$$
\frac{1}{n} c\left(x^{n}\right) \leq[(1-q) c(0)+q c(1)](1+\epsilon) .
$$

We will consider a fixed-to-fixed encoding strategy. To start with, we only provide representations to typical source sequences of length m.
(b) (5 pts) Denoting by $T\left(m, \epsilon, p_{U}\right)$ the typical source sequences of length m, show that

$$
2^{m(1+\epsilon) H(U)} \leq(1-\epsilon) 2^{n(1-\epsilon) h_{2}(q)}
$$

is a sufficient condition to assign to each member of $T\left(m, \epsilon, p_{U}\right)$ a unique representative in $T_{2}(n, \epsilon, q)$, for large enough n.
(c) (5 pts) Show that the cost per source letter of the above scheme is at most

$$
[(1-q) c(0)+q c(1)](1+\epsilon) \frac{n}{m} .
$$

(d) (10 pts) Show that for any $\delta>0$, there is a fixed-to-fixed encoding strategy (i.e., a choice of m, n, ϵ) that has cost per source letter at most

$$
\frac{(1-q) c(0)+q c(1)}{h_{2}(q)} H(U)(1+\delta)
$$

and negligible probability that U^{m} is not assigned a representation.
(e) (5 pts) Explain how would you take care of non-typical u^{m} 's?
(f) (5 pts) Conclude that for any $\delta>0$ we can represent data at an expected cost of at most

$$
\min _{0 \leq q \leq 1} \frac{(1-q) c(0)+q c(1)}{h_{2}(q)}(1+\delta)
$$

per information bit.

Problem 3. (40 points) Suppose we are given a discrete memoryless channel with input alphabet \mathcal{X}, output alphabet \mathcal{Y}, and also an encoder enc : $\{1, \ldots, M\} \rightarrow \mathcal{X}^{n}$ of blocklength n and rate $\frac{1}{n} \log _{2} M$ to transmit information over this channel.

Denote enc (m) by $\left(c_{1}(m), \ldots, c_{n}(m)\right)$, and define the following distributions on \mathcal{X} :

$$
p_{i}(x)=\frac{1}{M} \#\left\{m: c_{i}(m)=x\right\}, \quad i=1, \ldots, n
$$

and $\bar{p}(x)=\frac{1}{n} \sum_{i=1}^{n} p_{i}(x)$.
Let I_{i} denote the value of the mutual information $I(X ; Y)$ when X has distribution p_{i}, and let \bar{I} denote the mutual information when X had distribution \bar{p}.
(a) (5 pts) Suppose W is a message uniformly chosen among $1, \ldots, M$. The message W is encoded to $X^{n}=\operatorname{enc}(W)$ which is sent over the channel and Y^{n} is received. Show that the distribution of X_{i} is p_{i}.
(b) (10 pts) Show that

$$
\frac{1}{n} I\left(W ; Y^{n}\right) \leq \frac{1}{n} \sum_{i=1}^{n} I_{i} .
$$

[Hint: Consider how $I\left(W ; Y^{n}\right), I\left(X^{n} ; Y^{n}\right)$ and $\sum_{i} I\left(X_{i} ; Y_{i}\right)$ are related to each other.]
(c) (10 pts) Show that

$$
\frac{1}{n} I\left(W ; Y^{n}\right) \leq \bar{I}
$$

(d) (5 pts) Suppose a communications engineer claims that his newest code can reliably communicate over a binary symmetric channel at rates very close to the capacity. Remarkably, his code has the property that each message is encoded into a sequence that is 30% 1's and 70% 0's. Show that the engineer's claim is wrong. What is the highest rate he may hope to communicate with such a design?
(e) (10 pts) Suppose an encoder is constructed by choosing each $c_{i}(m)$ randomly and independently, according to a distribution p. Since the encoder is the outcome of a random experiment, the distributions p_{i}, \bar{p}, and the quantities $I\left(W ; Y^{n}\right), I_{i}, \bar{I}$ are all random variables. Show that I_{i} are i.i.d. with

$$
E\left[I_{i}\right] \leq I(p)
$$

where $I(p)$ denote the mutual information $I(X ; Y)$ when X has distribution p.

