
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
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Problem 1.

(a) It suffices to check that the lengths `(un) =
⌈
log2(n + 1) + log2

(
n
k

)⌉
(with k being

the number of 1’s in un satisfy Kraft’s inequality:∑
un

2−`(u
n) =

n∑
k=0

∑
un : un

has k 1’s

2−`(u
n)

≤
n∑
k=0

∑
un : un

has k 1’s

1

n+ 1

(
n

k

)−1

since `(un) ≥ log(n+ 1) + log

(
n

k

)

=
n∑
k=0

1

n+ 1
since the number of un with k 1’s is

(
n

k

)
= 1,

and we conclude that a prefix-free code with the desired lengths exists.

The form of `(un) suggests the following way to implement C (ignoring integer con-
straints): given un first describe the number of 1’s in it, k, by using log2(n + 1) bits
(note that k takes on only n + 1 possible values, 0, 1, . . . , n.) Next descibe the
sequence un by giving its index among the

(
n
k

)
sequences with k 1’s and n− k 0’s.

(b&c) Taking the hint 1 =
n∑
i=0

(
n

i

)
zi(1− z)n−i ≥

(
n

k

)
zk(1− z)n−k. which is equivalent to

what is to be shown in (b). Choosing z = k/n gives

(
n

k

)
2nh2(k/n) ≤ 1, which is what

is to be shown in (c).

(d) Since Un is random the number of 1’s in it, K, is also random with

E[K] = E
[∑

i

Ui
]

=
∑
i

E[Ui] = np.

We also have

length(Cn(Un)) < 1 + log(n+ 1) + log

(
n

K

)
≤ 1 + log(n+ 1) + nh2(K/n)

E
[
length(Cn(Un))

]
< 1 + log(n+ 1) + nE[h2(K/n)]

≤ 1 + log(n+ 1) + nh2(E[K]/n) concavity of h2

= 1 + log(n+ 1) + nh2(p),

as was to be shown.

Note that we have shown that the code we construced compresses any i.i.d. binary
source to close to its entropy (asymptotically, exactly to its entropy), and so it is
universal for this class of sources.



Problem 2.

(a) An element xn of T2 has at most n(1 − q)(1 + ε) 0’s and at most nq(1 + ε) 1’s.
Consequently, c(xn) is at most [(1 − q)nc(0) + qnc(1)](1 + ε). (A lower bound of
[(1− q)nc(0) + qnc(1)](1− ε) can be derived in the same way.)

(b) From the properties of typical sets, for large n the cardinality of T2 is at least (1 −
ε)2n(1−ε)h2(q), whereas the cardinality of typical source sequences T (m) is at most
2m(1+ε)H(U). Consequently, the condition guarantees that there are at least as many
sequences in T2 as in T (m) and thus that each typical source sequence can be assigned
a distinct representative in T2.

(c) By construction, each typical source sequence of length m is assigned a binary se-
quence of cost at most n

[
(1 − q)c(0) + qc(q)

]
(1 + ε), which yields the claimed cost

per source letter.

(d) If we choose

n = n(m, ε) :=
⌈
m

(1 + ε)H(U)

(1− ε)h2(q)

⌉
we are assured of satisfying the sufficient condition. Note that lim

ε→0
lim
m→∞

n(m, ε)/m =

H(U)/h2(q). Thus, given δ, if ε is chosen sufficiently small and m sufficiently large
we can ensure that

(i)
n

m
≤ H(U)

h2(q)
(1 + δ/3),

(ii) (1 + ε) that appears as a factor in the upper bound to cost is smaller than
(1 + δ)/(1 + δ/3).

(iii) Pr(Um ∈ T (m, ε, pU)) ≥ 1− δ (so that the probability that Um has no represen-
tative has negligible probability.)

(e) We can handle to non-typical um’s by prefixing the binary sequences assigned to
typical um’s by 1, (this changes the cost per letter in a neglible way for large m), and
then assigning to non-typical um binary sequences that start with 0, followed by a
unique m log2 |U| bit representation. The cost of the binary representatives for such
non-typical sequences is at most (m + 1) log2 |U|max{c(0), c(1)} and thus the cost
per letter is bounded. Since the set of non-typical um’s has negligible probability,
they make a neglibible contribution to the expected cost.

(f) To find the cost per information bit, we further normalize the expression in (d)
by H(U), allowing us to conclude that for any δ and any q there is a method of
representing the source with a cost of

(1− q)c(0) + qc(1)

h2(q)
(1 + δ)

per information bit. Since we can freely choose q, we can choose it to minimize this
expression, yielding the cheapest possible representation within the strategies we have
considered.

A finer argument also yields that no strategy (fixed-to-fixed or not) can represent informa-
tion at a lower cost, so the bound we derived is in general the best possible. Unequal cost
bits are not uncommon: think of the Morse code where the time it takes to send a dash is
longer than a dot.
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Problem 3.

(a) Note that Xi = x if and only if ci(W ) = x. By the definition of pi, there are
exactly Mpi(x) messages m for which ci(m) = x. Since W is uniformly distributed
on {1, . . . ,M} the probability that ci(W ) = x is Mpi(x)/M = pi(x).

(b) We know, by the data processing theorem, that I(W ;Y n) ≤ I(Xn;Y n). We also
know, from class, that when Xn and Y n are the input and output of a memoryless
channel, I(Xn;Y n) ≤

∑
i I(Xi;Yi). Since I(Xi;Yi) is the mutual information between

the input and output of the channel and since Xi has distribution pi, the value of
I(Xi;Yi) is Ii by the definition of Ii. Thus,

I(W ;Y n) ≤ I(Xn;Y n) ≤
∑
i

I(Xi;Yi) =
n∑
i=1

Ii.

as was to be shown.

(c) Denoting by I(p) the mutual information between the input and output of the channel
with the input has distribution p, we have Ii = I(pi) and Ī = I( 1

n

∑
i pi). From class,

we know that I(p) is a concave function of p, and thus

Ī ≥ 1

n

∑
i

I(pi) =
1

n

∑
i

Ii.

(d) By (c), the mutual information achieved by the engineer’s code is upper bounded by

1

n
I(W ;Y n) ≤ I(0.7, 0.3) := I(X;Y )|(pX(0),pX(1))=(0.7,0.3) < C

as the capacity of the binary symmetric channel is achieved by the distribution that
makes the inputs 0 and 1 equally likely. The engineer’s scheme can at best achieve
the rate I(0.7, 0.3).

(e) We have already observed that Ii = I(pi). Noting that

p1 is determined by c1(1), . . . , c1(M),

p2 is determined by c2(1), . . . , c2(M),

. . .

pn is determined by cn(1), . . . , cn(M),

we see that p1, p2, . . . , pn are independent of each other and have identical distribu-
tion. Consequently Ii are i.i.d.

Futhermore, for any x ∈ X , pi(x) =
1

M

M∑
m=1

1{ci(m) = x}, and thus

E[pi(x)] =
1

M

M∑
m=1

Pr{ci(m) = x} = p(x).

Consequently, E[Ii] = E[I(pi)] ≤ I(E[pi]) = I(p), as was to be shown. (The inequal-
ity is due to, again, the concavity of I(p) as a function of p.)
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What is shown here, combined with the law of large numbers, shows that if that a
code constructed randomly by choosing each letter of each codeword independently
according to a distribution p, then with very high probability the code will have
1
n
I(W ;Y n) ≤ I(p). This conclusion can then be use to show the existence of codes

that keep a bad receiver (e.g., an eavesdropper) ignorant of the transmitted data
while reliably sending data to a good receiver.
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