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Problem 1.

(a) Since C0 is a prefix-free code for the non-negative integers, the decoder, given a binary
string, can ‘climb the tree for C0’ until it reaches a leaf and discover `(u). It can then
read `(u) bits from the binary string which form C(u), since C is non-singular this
uniquely identifies u. Thus the code C̃ is uniquely decodable. Furthermore, since the
decoder never needs to read any additional bits from the input while decoding u, we
see that the C̃ is instantaneous, and consequently prefix-free.

(b) Observe that

∞∑
n=0

2−`0(n) ≤
∞∑
n=0

2−2 log2(n+1)−1 =
∞∑
n=0

1

2(n+ 1)2
< 1.

Thus length function `0 satisfies the Kraft inequality, hence a prefix-free code with
these lengths exist.

(c) We would order the binary strings from the shortest to longest: φ, 0, 1, 00, 01, 10,
11, 000, 001, . . . , and assign them to the letters in the order of decreasing probability
so the most probable letter gets the shortest codeword. In this assignment, we have:

Letters length of the assigned string
1 0
2, 3 1
4, 5, 6, 7 2
8, . . . , 15 3
. . . . . .
2n, . . . , 2n+1 − 1 n
. . . . . .

so we see that letter j is assigned a codeword of length blog2 jc.

(d) We have 1 =
∑K

i=1 pi ≥
∑j

i=1 pi ≥ jpj, the last inequality because the sum has j
terms, the smallest of which is pj.

(e) Using part (b) we know that there is a code C0 for the non-negative integers with

`0(n) = d2 log2(n+ 1) + 1e ≤ 2 log2(n+ 1) + 2.

With this code for the non-negative integers, we see that in the code C̃ as in part (a)
the letter j is assigned a codeword of length

˜̀(j) = `0(blog2 jc) + `(j)

≤ 2 log2(blog2 jc+ 1) + 2 + `(j)

≤ 2 log2(log2 j + 1) + 2 + `(j)

≤ 2 log2(log2(1/pj) + 1) + 2 + `(j) by part (d).



(f) It suffices to show the inequality for the expected length of the non-singular code C
in part (c). Since C̃ is uniquely decodable, H(U) ≤ E[˜̀(U)]. Thus,

H(U) ≤ E[˜̀(U)]

≤
∑
j

pj
(
2 log2(log2(1/pj) + 1) + 2 + `(j)

)
= 2

∑
j

pj
(
log2(log2(1/pj) + 1)

)
+ 2 + E[`(U)]

≤ 2 log2

(∑
j

pj log2(1/pj) + 1
)

+ 2 + E[`(U)]

= 2 log2(H(U) + 1) + 2 + E[`(U)].

Problem 2.

(a) Since for large enough n we have

Pr
(
Un ∈ A

)
> 1− ε,

we see that 1− Pr(Un ∈ A ∩ S) = Pr(Un ∈ Ac ∪ Sc) < ε+ δ.

(b) Since for un ∈ A we have Pr(Un = un) ≤ 2−nH(p)(1−ε), we have

1− δ − ε < Pr(Un ∈ S ∩ A) =
∑

un∈S∩A

Pr(Un = un)

≤
∑

un∈S∩A

2−nH(p)(1−ε) = |S ∩ A|2−nH(p)(1−ε).

(c) For un ∈ A we have Pr(Ũn = un) ≥ 2−n[D(p‖p̃)+H(p)](1+ε). Thus

Pr
(
Ũn ∈ S

)
≥ Pr

(
Ũn ∈ S ∩ A

)
=

∑
un∈S∩A

Pr
(
Ũn ∈ un

)
≥

∑
un∈S∩A

2−n[D(p‖p̃)+H(p)](1+ε)

≥ |S ∩ A|2−n[D(p‖p̃)+H(p)](1+ε)

≥ (1− δ − ε)2−n(1+ε)D(p‖p̃) 2−n2εH(p).

(d) Letting
S = {un : the device decides p},

we see that αn is exactly the probability that an i.i.d. sequence distributed with p falls
outside S. When αn ≤ δ, we see that S satisfies the conditions of the problem state-
ment. Furthermore βn is exactly the probability that an i.i.d. sequence distributed
with p̃ falls in S, so, by part (c)

βn
.

≥ 2−nD(p‖p̃).
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Problem 3. Note that while U1, U2, . . . is a Markov chain V1, V2, . . . may not be. Conse-
quently it is not an easy task to compute the entropy rate of the V process.

(a)

(A1) Conditioning further on U1, . . . , Un reduces entropy, and when U1, . . . , Un are
given, V1, . . . , Vn are determined and can be dropped without changing entropy.

(A2) Given Un, the future Un+1, Un+2, . . . are independent of the past U1, . . . , Un−1.
Since Vn+1, . . . , Vn+2, . . . are functions of Un+1, Un+2, . . . , they are also indepen-
dent of U1, . . . , Un−1 once Un is given. Thus, U1, . . . , Un−1 can be dropped from
the conditioning without changing entropy.

(A3) By stationarity, the time index can be shifted by n− 1.

(A4) V1 is determined by U1 so it can be added without changing entropy.

(b) Taking the limit as n→∞ of the both sides of the inequality shown in (a)

H(Vm+n|Vm+n−1, . . . , V1) ≥ H(Vm+1|Vm, . . . , V1, U1)

and noting that the right hand side has no n, we see that

HV ≥ H(Vm+1|Vm, . . . , V1, U1).

(c) This is by definition of conditional mutual information.

(d) (D1) because H(U1|V1, V2, . . . ) is non-negative.

(D2) chain rule for mutual information.

(e) Defining rm = I(U1;Vm+1|V1, . . . , Vm), we see from (d) that rm is a sequence with∑
m rm <∞. Thus rm converges to zero.

(f) By part (c) and (e) we see that the sequence am = H(Vm+1|Vm, . . . , V1, U1) has the
same limit as the sequence bm = H(Vm+1|Vm, . . . , V1). But bm converges to HV . Thus
am also coverges to HV and by (b) it does so from below.

Note that we know that bm coverges to HV from above, so the conclusion that am
converges to HV from below gives us a computational method to approximate HV

to any desired accuracy: compute a1, b1, a2, b2, . . . , until bm − am is smaller than the
desired accuracy of approximation.
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