ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 11
Information Theory and Coding
Solutions to homework 5
Oct 23, 2012

Problem 1. (a) We can write the following chain of inequalities:

$$
\begin{align*}
Q^{n}(\mathbf{x}) & \stackrel{1}{=} \prod_{i=1}^{n} Q\left(x_{i}\right) \stackrel{2}{=} \prod_{a \in \mathcal{X}} Q(a)^{N(a \mid \mathbf{x})} \stackrel{3}{=} \prod_{a \in \mathcal{X}} Q(a)^{n P_{\mathbf{x}}(a)}=\prod_{a \in \mathcal{X}} 2^{n P_{\mathbf{x}}(a) \log Q(a)} \tag{1}\\
& =\prod_{a \in \mathcal{X}} 2^{n\left(P_{\mathbf{x}}(a) \log Q(a)-P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)+P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)\right)} \tag{2}\\
& =2^{n \sum_{a \in \mathcal{X}}\left(-P_{\mathbf{x}}(a) \log \frac{P_{\mathbf{x}}(a)}{Q(a)}+P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)\right)}=2^{n\left(-D\left(P_{\mathbf{x}} \| Q\right)+H\left(P_{\mathbf{x}}\right)\right)}
\end{align*}
$$

where 1 follows because the sequence is i.i.d., grouping symbols gives 2 , and 3 is the definition of type.
(b) Upper bound: We know that

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=1
$$

Consider one term and set $p=k / n$. Then,

$$
1 \geq\binom{ n}{k}\left(\frac{k}{n}\right)^{k}\left(1-\frac{k}{n}\right)^{n-k}=\binom{n}{k} 2^{n\left(\frac{k}{n} \log \frac{k}{n}+\frac{n-k}{n} \log \frac{n-k}{n}\right)}=\binom{n}{k} 2^{-n h_{2}\left(\frac{k}{n}\right)}
$$

Lower bound: Define $S_{j}=\binom{n}{j} p^{j}(1-p)^{n-j}$. We can compute

$$
\frac{S_{j+1}}{S_{j}}=\frac{n-j}{j+1} \frac{p}{1-p}
$$

One can see that this ratio is a decreasing function in j. It equals 1 , if $j=n p+p-1$, so $\frac{S_{j+1}}{S_{j}}<1$ for $j=\lfloor n p+p\rfloor$ and $\frac{S_{j+1}}{S_{j}} \geq 1$ for any smaller j. Hence, S_{j} takes its maximum value at $j=\lfloor n p+p\rfloor$, which equals k in our case. From this we have that

$$
\begin{align*}
1 & =\sum_{j=0}^{n}\binom{n}{j} p^{j}(1-p)^{n-j} \leq(n+1) \max _{j}\binom{n}{j} p^{j}(1-p)^{j} \\
& \leq(n+1)\binom{n}{k}\left(\frac{k}{n}\right)^{k}\left(1-\frac{k}{n}\right)^{n-k}=\binom{n}{k} 2^{-n h_{2}\left(\frac{k}{n}\right)} \tag{3}
\end{align*}
$$

The last equality comes from the derivation we had when proving the upper bound.
Problem 2. Upon noticing $0.9^{6}>0.1$, we obtain $\{1,01,001,0001,00001,000001,0000001$, $0000000\}$ as the dictionary entries.

Problem 3. Since the words of a valid and prefix condition dictionary reside in the leaves of a full tree, the Kraft inequality must be satisfied with equality: Consider climbing up the tree starting from the root, choosing one of the D branches that climb up from a node with equal probability. The probability of reaching a leaf at depth l_{i} is then $D^{-l_{i}}$. Since the climbing process will certainly end in a leaf, we have

$$
1=\operatorname{Pr}(\text { ending in a leaf })=\sum_{i} D^{-l_{i}} .
$$

If the dictionary is valid but not prefix-free, by removing all words that already have a prefix in the dictionary we would obtain a valid prefix-free dictionary. Since this reduced dictionary would satisfy the Kraft inequality with equality, the extra words would cause the inequality to be violated.

Problem 4.

(a) Let I be the set of intermediate nodes (including the root), let N be the set of nodes except the root and let L be the set of all leaves. For each $n \in L$ define $A(n)=\{m \in N: m$ is an ancestor of $n\}$ and for each $m \in N$ define $D(m)=\{n \in$ $L: n$ is a descendant of $m\}$. We assume each leaf is an ancestor and a descendant of itself. Then

$$
\begin{aligned}
E[\text { distance to a leaf }]=\sum_{n \in L} P(n) \sum_{m \in A(n)} & d(m) \\
& =\sum_{m \in N} d(m) \sum_{n \in D(m)} P(n)=\sum_{m \in N} P(m) d(m)
\end{aligned}
$$

(b) Let $d(n)=-\log Q(n)$. We see that $-\log P\left(n_{j}\right)$ is the distance associated with a leaf. From part (a),

$$
\begin{aligned}
H(\text { leaves }) & =E[\text { distance to a leaf }] \\
& =\sum_{n \in N} P(n) d(n) \\
& =-\sum_{n \in N} P(n) \log Q(n) \\
& =-\sum_{n \in N} P(\text { parent of } n) Q(n) \log Q(n) \\
& =-\sum_{m \in I} P(m) \sum_{n: n \text { is a child of } m} Q(n) \log Q(n) \\
& =\sum_{m \in I} P(m) H_{m^{\prime}}
\end{aligned}
$$

(c) Since all the intermediate nodes of a valid and prefix condition dictionary have the same number of children with the same set of Q_{n}, each $H_{n}=H$. Thus H (leaves) $=$ $H \sum_{n \in I} P(n)=H E[L]$.
Problem 5. (a)

$$
E\left[F_{n}\right]=E\left[F_{0} X_{0} X_{1} \ldots X_{n}\right]=F_{0}\left(E\left[X_{1}\right]\right)^{n}=F_{0}(9 / 8)^{n}
$$

We exploited the i.i.d. property of the sequence. One can see that $E\left[F_{n}\right] \rightarrow \infty$ with $n \rightarrow \infty$.
(b)

$$
\begin{align*}
l_{n} & =E\left[\log _{2} F_{n}\right]=E\left[\log _{2}\left(F_{0} X_{0} X_{1} \ldots X_{n}\right)\right]=E\left[\log _{2} F_{0}+\sum_{i=1}^{n} \log _{2} X_{i}\right]= \\
& =E\left[\log _{2} F_{0}\right]+n E\left[\log _{2} X_{1}\right]=\log _{2} F_{0}-\frac{n}{2} \tag{4}
\end{align*}
$$

(c) It concentrates around $2^{l_{n}} . F_{n}$ in itself is not a sum of i.i.d. variables. Taking its logarithm results such a sum, so the law of large numbers applies.

$$
\log _{2} F_{n}=\log _{2} F_{0}+\sum_{i=1}^{n} \log _{2} X_{i} \rightarrow \log _{2} F_{0}+n E\left[\log X_{1}\right]=\log _{2} F_{0}-\frac{n}{2}
$$

(d) From the previous result it follows that although it seems appealing that the expected value of our fortune goes to infinity, it actually converges to 0 (very rapidly).
(e) We can equivalently say that instead of playing n times, we create 2^{n} portions of our initial money, $\binom{n}{i}$ portions of size $F_{0} r^{n-i}(1-r)^{i}$, for all $i=0, \ldots, n$. Then we bet i times every $F_{0} r^{n-i}(1-r)^{i}$ portion. We have seen that the more we play, the more we lose, so we should give smaller portions to large i values. The best is to set $i=0$ for all our money, that is $r=1$, i.e. we don't play at all.

