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Problem 1. From symmetry, the capacity achieving distribution has to be p(1) = p(−1) =
α, and p(0) = 1− 2α for some α. The cost constraint translates to

p(1) + p(−1) = 2α ≤ β.

Computing I(X;Y ) we get that
I(X;Y ) = 2α.

So, we want that α is the largest possible:

α =

{
β/2, if β ≤ 1

1/2, if β > 1
.

Hence, the capacity is

C =

{
β, if β ≤ 1

1, if β > 1
.

Problem 2.

(a) We know that log is concave, the sum of concave functions is concave again.

(b) The Kuhn-Tucker conditions are

1
σ2
i

1 + pi
σ2
i

= µ, for pi > 0,

1
σ2
i

1 + pi
σ2
i

≤ µ, for pi = 0,

With rearranging the terms we can get the desired form with λ = 1
µ
.

(c) It directly follows from part (b).

(d) Water-filling: start with λ = 0 and start increasing λ until
∑

i pi = 1.

Problem 3. Since X and Z are both in the interval [−1, 1], their sum X + Z lies in the
interval [−2,+2]. If we could choose the distribution of X + Z as we wished (without the
constraint that it has to be the sum of two independent random variables, one of which is
uniform) we would have chosen it to be uniform on the interval [−2,+2] to have the largest
entropy. Observe now that if we choose X as the random variable that equals +1 with
probability 1/2 and −1 with probability 1/2, then X + Z is uniform in [−2,+2] and thus
this distribution maximizes the entropy. An alternate derivation is as follows: note that
since X and Z are independent, the moment generating functions of the random variables
involved satisfy E[es(X+Z)] = E[esX ]E[esX ]. Now, we know that E[esZ ] =

∫
eszfZ(z) dz =∫ +1

−1
1
2
esz dz = [es− e−s]/(2s). Similarly, if we want X +Z to be uniform on [−2, 2], we can

compute E[es(X+Z)] = [e2s−e−2s]/(4s). This then requires E[esX ] = 1
2
[e2s−e−2s]/[es−e−s] =



1
2
[es + e−s] which is the moment generating function of a random variable which takes on

the values +1 and −1, each with probability 1/2.
Similarly, under the constraint XZ lies in the interval [−1,+1], and the best we could

hope is that XZ is uniform on this interval. But this can be achieved by making sure that
X only takes on the values +1 or −1.

Problem 4.

h(X) =
1

2
log(2πeσ2

x)

h(Y ) =
1

2
log(2πeσ2

y)

h(X, Y ) =
1

2
log((2πe)2 det(K)) =

1

2
log((2πe)2(σ2

xσ
2
y − ρ2σ2

xσ
2
y)

I(X, Y ) = h(X) + h(Y )− h(X, Y ) =
1

2
log

1

1− ρ2

Note that the result does not depend on σx, σy, which says that normalization does not
change the mutual information.

Problem 5. First Method:

(a) It suffices to note that H(X|Y ) = H(X + f(Y )|Y ) for any function f .

(b) Since among all random variables with a given variance the gaussian maximizes the
entropy, we have

H(X − αY ) ≤ 1

2
log 2πeE((X − αY )2) .

(c) From (a) and (b) we have

I(X;Y ) = H(X)−H(X − αY |Y )

≥ H(X)−H(X − αY )

≥ H(X)− 1

2
log 2πeE((X − αY )2) .

(d) We have that dE((X−αY )2)
dα

= 0 is equivalent to E(Y (X−αY )) = 0. Hence dE((X−αY )2)
dα

is equal to zero for α = α∗ = E(XY )
E(Y 2)

. Now on the one hand E(XY ) = E(X(X+Z)) =

E(X2)+E(XZ) and because of the independence between X and Z and the fact that
Z has zero mean we have that E(XZ) = 0, and hence E(XY ) = P . On the other
hand E(Y 2) = E((X + Z)2) = E(X2) + 2E(XZ) + E(Z2) = P + 0 + σ2. Therefore
α∗ = P/(P + σ2).

Then observing that E((X−αY )2) is a convex function of α we deduce that E((X−
αY )2) is minimized for α = α∗. Finally an easy computation yields to E((X −
α∗Y )2) = σ2P

σ2+P
.

(e) Since X is gaussian from (c) and (d) we deduce that

I(X;Y ) ≥ 1

2
log 2πeP − 1

2
log 2πe

σ2P

σ2 + P

=
1

2
log

(
1 +

P

σ2

)
. (1)

with equality if and only if Z is gaussian with covariance σ2.
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Second Method:

(a) This is by the definition of mutual information once we note that pY |X(y|x) = pZ(y−
x).

(b) Note that pX(x)pZ(y − x) is simply the joint distribution of (x, y), and thus the
integral ∫∫

pX(x)pZ(y − x) ln
Nσ2(y − x)

Nσ2+P (y)
dxdy.

is an expectation, namely

E ln
Nσ2(Y −X)

Nσ2+P (Y )
.

Substituting the formula for N , this in turn, is

E ln
Nσ2(Y −X)

Nσ2+P (Y )

=
1

2
ln
(
1 + P/σ2

)
+

1

2(σ2 + P )
E[Y 2]− 1

2σ2
E[(Y −X)2]

=
1

2
ln
(
1 + P/σ2

)
+

1

2(σ2 + P )
E[(X + Z)2]− 1

2σ2
E[Z2]

=
1

2
ln
(
1 + P/σ2

)
+

1

2(σ2 + P )
E[X2 + Z2 + 2XZ]− 1

2

=
1

2
ln
(
1 + P/σ2

)
+

1

2(σ2 + P )
(P + σ2 + 0)− 1

2

=
1

2
ln
(
1 + P/σ2

)
(c) The steps we need to justify read

ln(1 + P/σ2)− I(X;Y ) =

∫∫
pX(x)pZ(y − x) ln

Nσ2(y − x)pY (y)

Nσ2+P (y)pZ(y − x)
dxdy

≤
∫∫

pX(x)Nσ2(y − x)pY (y)

Nσ2+P (y)
dxdy − 1

=

∫
pY (y) dy − 1

= 0.

The first equality is by substitution of parts (a) and (b). The inequality is by ln(x) ≤
x− 1. The next equality is by noting that∫

pX(x)Nσ2(y − x)dx = (pX ∗ Nσ2)(y) = (NP ∗ Nσ2)(y) = NP+σ2(y).

The last equality is because any density function integrates to 1.

(d) The conclusion is made by noting that the right hand side of the first equality in (c)
is equal to zero if pZ = Nσ2 .
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