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Problem 1.

(a) Since the events are independent Pr(∩iEi) =
∏

i Pr(Ei) = (1 − p)M . From the hint
1− p ≤ e−p; thus (1− p)M ≤ exp(−pM).

(b) The decoder output is not equal to encoder input if all the events Ei = {U(i) 6= u}
happen. Since U(i) are chosen independently these events are independent and each
has probability 1− pUn(u). The claim now follows from part (a) with p = pUn(u).

(c) If u is ε-typical

pUn(u) =
∏
a

pU(a)#{i:ui=a} ≥
∏
a

pU(a)n(1+ε)pU (a) = 2−n(1+ε)H(U).

The claim now follows from part (c).

(d) Given R > H(U) we can pick ε > 0 such that (1 + ε)H(U) < R. Let T nε denote the
ε-typical sequences. The probability of error can be written as

Pr(Dec Enc(U)) 6= U) = Pr(Dec Enc(U)) 6= U|U ∈ T nε ) Pr(U ∈ T nε )

+ Pr(Dec Enc(U)) 6= U|U 6∈ T nε ) Pr(U 6∈ T nε )

The first term is less than Pr(Dec Enc(U) 6= U|U ∈ T nε ), which, in turn, is less than
exp(−2n[R−(1+ε)H(U)]) by part (c). The second term is less than Pr(U 6∈ T nε ). Both of
these go to zero as n gets large.

Problem 2.

(a) Taking the hint, if 0 < β1 < β2 we can write β1 = (1 − λ)0 + λβ1 with λ = β1/β2.
Since λ ∈ (0, 1) and since f is concave

f(β1) ≥ (1− λ)f(0) + λf(β2) = β1f(β2)β1

thus f(β1)/β1 ≥ f(β2)/β2.

(b) Recall that C(β) = maxpX :E[X]≤β I(X;Y ). Since E[X] = Pr(X = 1), we see that
C(β) = maxα≤β I(α).

Furthermore, since I(·) is concave, by denoting by β0 the value of β that maximizes
I(β), we see that I(·) is increasing on [0, β0] and decreasing on [β0, 1]. Consequently,
we can write

C(β) =

{
I(β) β ≤ β0

I(β0) β ≥ β0.



(c) From part (b)

C(β)/β =

{
I(β)/β β ≤ β0

I(β0)/β β ≥ β0.

By part (a) we see that C(β)/β is decreasing on [0, β0] and continues to decrease for
β > β0. Consequently its supremum is achieved as β approches 0 from above,

sup
β>0

C(β)

β
= lim

β↘0

I(β)

β
.

(d) Note that

I(β) = β
∑
y

p(y|1) log
p(y|1)

βp(y|1) + (1− β)p(y|0)

+ (1− β)
∑
y

p(y|0) log
p(y|0)

βp(y|1) + (1− β)p(y|0)

and thus

I(β)/β =
∑
y

p(y|1) log
p(y|1)

βp(y|1) + (1− β)p(y|0)

+ (1− β)
1

β

∑
y

p(y|0) log
p(y|0)

βp(y|1) + (1− β)p(y|0)

As β → 0, the first term approaches
∑

y p(y|1) log p(y|1)
p(y|0)

. So we only need to show
that the second term approaches zero to reach the desired conclusion. To that end,
observe that the second term, being in the form of a divergence, is non-negative.
Furthermore, using ln z ≤ z − 1,

0 ≤ 1− β
β

∑
y

p(y|0) ln
p(y|0)

βp(y|1) + (1− β)p(y|0)

≤ 1− β
β

∑
y

p(y|0)
[ p(y|0)

βp(y|1) + (1− β)p(y|0)
− 1
]

= (1− β)
∑
y

p(y|0)
p(y|0)− p(y|1)

βp(y|1) + (1− β)p(y|0)

→
∑
y

[p(y|0)− p(y|1)] = 0 as β → 0.

(e) Using [p(0|0), p(1|0)] = [1−p, p] and [p(0|1), p(1|1)] = [p, 1−p] we see that the formula
of (d) gives the capacity per cost as (1− 2p) log[(1− p)/p].

Problem 3.

(a) The blocklength is n = 4. The number of codewords is 9: we can choose any x3 ∈ F3

and x4 ∈ F3 and the parity check equations determine (x1, x2). The rate is R =
(1/4) log 9 = (1/2) log 3.
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(b) The received word y is of the form x+z where z is either the zero vector or it contains
an single non-zero entry. Thus Hy is either zero or is a multiple of a column of H.
Since all these cases are distinct the decoder can discover if x was changed during
transmission and how.

(c) Augmenting the matrix will increse the blocklength to n = 5 and increase the number
of codewords to 27: now (x3, x4, x5) can be freely chosen. The rate thus becomes
(3/5) log 3 and is increased from (1/2) log 3.

(d) None of them, since each is a multiple of an existing column on H.

(e) In this case the received word is of the form y = x + z where z is either 0 or contains
a single 1. To ensure Hy is distinct in all the cases all we need to ensure is that the
columns of H are non-zero and distinct (but not necessarily their multiples). Thus,[

2
2

]
and

[
2
1

]
are valid augmentations.
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