
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Midterm Graph Theory Applications

Date: April 11, 2013 Spring 2013

The midterm exam is closed book, but you can use one A4 piece of paper where you can note

anything you want. The exam lasts from 4:15pm till 6pm. DON’T PANIC. It is not necessarily

expected that you solve all problems. Solve those problems first that you find easiest and then

gradually move to the harder ones. Be concise! The solution for each of the four problems can be

written down in a matter of some lines (not pages). We will subtract points for any material in

your answer is not directly related to the solution.

Problem 1 (20pts). Let G be a k-regular bi-partite graph on the vertex set V = X∪Y , |X| = |Y |,
and edge set E. Let A be the adjacency matrix corresponding to G. Show that A has an eigenvalue

of k as well as an eigenvalue of −k. What are the two eigenvectors which correspond to these two

eigenvalues?

Solution: Note that A has block-structure, i.e., it consists of 2 × 2 blocks each of size |X| × |X|.
The two blocks along the diagonal are zero and the other two are symmetric.

Let v be the all-one vector. Then Av = kv. This means, the eigenvector corresponding to the

eigenvalue k is the all-one vector.

Next, consider the vector u, where the first |X| components are +1 and the second |X| components

are −1. Again, an explicit check shows that Au = (−k)u.

Problem 2 (20pts). Given a simple connected graph G = (V,E) with edge costs we for each e ∈ E

(assume all edge costs are distinct), prove the following two fundamental properties that are used

in all Minimum Spanning Tree (MST) algorithms.

a) (Cut Property) For any proper subset S ⊂ V of nodes in G, let e = (u, v) be the edge with

minimum weight such that u ∈ S and v ∈ V \ S. Show that every MST must contain e.

b) (Cycle Property) Let C be a cycle in G. Let e = (u, v) be the edge with maximum weight in C.

Show that e is not in any MST of G.

Solution:

Cut Property: To see the first claim, let S ⊂ V be subset and let e be the edge with the given

property. Assume that e is not already contained in the MST. We will show that this leads to a

contradiction.

Add this edge to the spanning tree, hence creating a unique cycle. We can now drop from this

cycle exactly the second edge which connects S to the outside, creating again a spanning tree. If

e has, as given by assumption, strictly smaller weight, then the newly created spanning tree has

strictly smaller weight, leading to the promised contradiction.



Cycle Property: Again we proceed by contradiction. Assume a MST does contain this edge. Then

remove this edge from the spanning tree, so that we now get two components, let the vertices of

these two components be called S and U and note that S ∪ U = V . Note that the edge e has

one end in S and the other end in U . Let C be the cycle containing edge e. We claim that then

C must contain at least one more edge, call it e′ which has one end in S and one end in U . By

definition the edge e′ has smaller weight. Hence by adding it to the the two components we get a

new spanning tree, but this tree has strictly smaller weight.

Problem 3 (20pts). Let G be a bipartite graph, with bipartition (X,Y ) with no isolated vertices.

Suppose that for every edge (x, y) with one end x ∈ X and another end y ∈ Y , we have deg(x) ≥
deg(y). Prove that G has a matching that covers X.

Solution: Let us verify Hall’s condition. Let S ⊂ X and let N(S) be the corresponding set of

neighbors of S. Let E be the set of edges emanating from S. Order the nodes in S by increasing

degree and let the degrees be d1 ≤ d2 ≤ d3 ≤ · · · ≤ d|S|.

Start with the empty set and add the elements of S according to this ordering one by one. Let Ni,

1 ≤ i ≤ |S|, denote the set of neighbors of the subset after i elements have been added. Order the

neighbors of these subsets in the order they are added to and let Dj , 1 ≤ j ≤ |Ni|.

We claim that at “time” i, 1 ≤ i ≤ |S|, the following holds:

(i) |Ni| ≥ i,

(ii) All Dj are upper bounded by di and Dj ≤ dj , 1 ≤ j ≤ i.

Both conditions are trivially verified after the first step. After each additional step they follow by

induction. (i) follows from (ii) since if the degrees of the neighbors are no larger than the degrees of

the X subset, it means that we need to have at least as many neighbors as there are elements in the

X subset in order to place all the edges. In a similar manner (ii) follows from (i): New neighbors

which are added at a point fulfill this condition by assumption. On the other hand, neighbors which

were already added fulfill the constraint since by definition the di sequence is increasing and no Dj

degree at any point is larger than the largest di degree by construction.

Problem 4 (20pts). [Who is afraid of directed graphs?] A catenym is a pair of words separated by

a period such that the last letter of the first word is the same as the first letter of the second. For

example, the following are catenyms: dog.gopher, gopher.rat, rat.tiger, etc. A compound catenym

is a sequence of three or more words separated by periods such that each adjacent pair of words

forms a catenym. For example, dog.gopher.rat.tiger is a compound catenym. Now, you are given a

dictionary of words in English as input. Can you give an efficient procedure to determine if there

is a compound catenym that uses each word in the dictionary exactly once?

Solution: Let G be the graph with V = {a, b, c, ...., z} and edge set corresponding to the words in

the dictonary. The graph is directed and eg. the word “tiger” corresponds to an edge which starts

at the vertex “t” and ends at the vertex “r”. The question of finding a single compound catenym

then is equivalent of finding an Eulerian tour.

2



We have seen in class a simple condition for undirected graphs. In particular, for a graph to have

an Eulerian cycle, all nodes had to have even degree. For the graph to have an Eulerian tour, all

except exactly two, had to have even degree, and the two nodes of odd degree were the start and

ending of the tour, respectively.

For directed graphs we quickly mentioned the equivalent procedure. Now we have indegree and

outdegree of a node. The equivalent conditions are then the following. If we want an Eulerian cycle

then for each node the indegree has to be equal to the outdegree. If we only want an Eulerian tour

then the same condition has to hold except for exactly two nodes. For one of these two nodes the

indegree has to be one larger and for the other one the indegree has to be one smaller than the

outdegree.

Explicitly this means the following. For every letter of the alphabet except exactly two the number

of words start and the number of words ending with this letter must be equal. For one letter there

must be exactly one more words starting with this letter than ending and for the second special

letter there must be exactly one more word ending with this letter than starting with this letter.

3


