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Problem 1. We construct a graph where people become vertices and there is an edge between two

people if and only if these people are sitting next to each other during a dinner. From the problem

statement, anybody can sit next to anybody, therefore our graph is the complete graph on 2k + 1

vertices. We want to find circular arrangements of the people where everybody appears exactly

once. This corresponds to finding a Hamiltonian cycle in K2k+1. Finally, we are looking for k such

arrangements such that no person sits next to the same person in any two of these arrangements,

so in graph theoretic terms, we are looking for k edge-disjoint Hamiltonian cycles in K2k+1. We

label the people by 0, 1, . . . , 2k − 1,∞.

Then the first cycle is

C0 =∞, 0, 2k − 1, 1, 2k − 2, 2, 2k − 3, . . . , k − 1, k,∞.

We get a new cycle by adding 0 ≤ ` ≤ k − 1 to every element (except for ∞) and taking the

mod 2k result:

C` =∞, `, 2k − 1 + `, 1 + `, . . . , k − 1 + `, k + `,∞.

Clearly we get a Hamiltonian cycle for every `. We need to show that these cycles are edge-disjoint.

In other words, given an edge (i, j) we have to be able to uniquely identify the cycle in which the

given edge appears.

For edges of the form (∞, i), note that for different values of ` both the first and the last edges

of the cycles connect different vertices to vertex ∞. Also, the first edge connects only neighbors

i < k, while the last connects neighbors i ≥ k. Hence, for such an edge we can immediately see

this property.

For edges (i, j), i, j 6= ∞, observe that the differences between the elements of the cycles (not

looking at the first and the last edges) are 2k − 1, 2, 2k − 3, 4, . . . , 1. All these values are different

(odd elements are odd and decreasing, even elements are even and increasing) an they are the same

in every cycle. Hence, from computing j−i, we can tell at which position this pair of vertices has to

appear in the cycle. But we also see that in a given position every cycle has a different element, so

given an edge (i, j) we can uniquely tell in which cycle the given edge appears. We further have to

note that it cannot happen that we find both (i, j) and (j, i), because the positions corresponding

to i − j and j − i are complementary in the sense that what appears in one does not show up in

the other.

One can visualize this construction by placing the vertices around a circle and placing ∞ in the

middle. Adding 1 mod 2k corresponds to a counter-clockwise rotation of the vertices while keeping

the edges in place. As an example the construction is shown for k = 4, ` = 0.
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Figure 1: Construction for Problem 1

Problem 2. Let v be the vertex of the largest degree and (v, 1), (v, 2), . . . , (v, k) the edges connected

to it. For each edge (v, i) we find the longest path that contains (v, i). Consider the endpoints vi
of the paths that are closer to vertex i than to vertex v. These vertices are a) unique, because the

path between v and vi is unique, so if a path contains both v and vi then its subpath between v

and vi is the same as the subpath between v and vi in the longest path; b) have degree 1, because

otherwise the path could be lengthened (if it had one more neighbor, then it cannot be on the path,

because a cycle would be created). So, we have found k vertices of degree 1.

Problem 3. (a) Each vertex in the tree, other than the root, is the child of a unique vertex (its

“father”). Each internal vertex is the father of exactly d− 1 children, so there are a total of

i ·(d−1) children. Adding the root and its dr children, we conclude that n = 1+dr+i ·(d−1).

(b) Count leaves in each subtree rooted at a child of the root. These trees are trees where each

interior node and the root have d − 1 children. By induction on the height h′ of these trees

we prove that each of them has at most (d− 1)h
′
:

h′ = 0: l = 1

If h′ = k − 1 holds and consider a tree of height h′ = k. The (d − 1) subtrees rooted at

the children of the root have height at most k − 1. Therefore each of them contains at most

(d−1)k−1 leaves therefore the whole tree contains at most (d−1)(d−1)k−1 = (d−1)k leaves.

We can now count the maximum number of leaves in the original tree. Each of the dr subtrees

rooted at each of the children of ther root has at most (d − 1)h−1 leaves therefore a tree of

height h has at most dr(d− 1)h−1 leaves.

Equality is achieved when all leaves appear at the same level.

(c) l 6 dr(d− 1)h−1 ⇒ h > ⌈logd−1(
l
dr
)⌉+ 1

Equality is achieved when all nodes appear at level h and h− 1.

Problem 4. For the “if” part, we want to show that det(A + kI) = 0. If G is bipartite, then we

can relabel the vertices such that A looks like

A =

(
0 B

B⊤ 0

)
,
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Figure 1: Construction for Problem 1

Problem 2. Let ∆(G) = ∆. If ∆ is an eigenvalue of A, then we know that there exists a v for

which

v(A−∆I) = 0. (1)

We can also assume that the largest (absolute value) element of v is 1. (If not, we divide the vector

by its largest element.) Let 1 be the i-th element of v. Consider the i-th column of A′ = A−∆I.

We know that the diagonal elements of A′ are −∆, so we have from (1) that

n∑

j=1,j 6=i

vjA
′
j,i = ∆. (2)

Also, we know that
∑n

j=1,j 6=iA
′
j,i gives the degree of the ith vertex, so

n∑

j=1,j 6=i

A′
j,i ≤ ∆. (3)

Since vi is the largest element in v, we must have that (3) is equality and vj = 1, if A′
j,i 6= 0. In

other words, every vertex j that is connected to i has vj = 1.

We can repeat the same argument for vj , and continuing the process, in the end for all elements of

v, since G is connected. We see that every element of v equals 1, which implies that every column

of A sums up to ∆, i.e. the graph is regular.

Problem 3. Let C = {c1, c2, . . . , cn} be the n distinct colors and D = {d1, . . . , dn} the n distinct

diameters. Create a bipartite graph G(C ∪ D,E), where edge (ci, dj) is in E if and only if there

is a ball of color ci and diameter dj among the nk balls. Observe that the final graph G will be a

k-regular bipartite graph, since every vertex ci must have degree k and every vertex dj must have

degree k. By a proposition in the class notes, we conclude that this graph has a perfect matching

M (of size n). Our final selection of balls is exactly the n balls corresponding to the edges in M :

since the edges in M cover all vertices in C and all vertices in D, the corresponding balls cover all

possible colors and all possible diameters.

Problem 4. We construct the following bipartite graph G(X ∪ Y ;E), where vertices on the left

hand side correspond to kids and vertices on the right hand side correspond to toys.

• X = X1 ∪ X2 where X1 = {x1, . . . , x15} corresponds to the set of 15 kids, and X2 =

{x′1, . . . x′15} is a copy of X1 and we can think of the x′is as clones of the kids;
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• Y = {y1, . . . , y30} corresponds to the set of toys; and

• there is an edge (xi; yj) if and only if kid i names toy j as one of its preferred toys. For every

edge (xi; yj), we also place an edge (x′i; yj).

Observe that in G

1. For any set S ⊆ X1 (or X2), N(S) ≥ 2|S| by the teacher’s claim.

2. By construction, for every T ′ ⊆ X2, N(T ′) = N(T ).

Consider a set S ∪ T ′ ⊆ X1 ∪X2. We have

N(S ∪ T ′) = N(S ∪ T ) (4)

≥ 2|S ∪ T | (5)

= |S|+ |T |+ |S \ T |+ |T \ S| (6)

≥ |S|+ |T | (7)

= |S|+ |T ′| (8)

= |S ∪ T ′|, (9)

where the last equality follows from S \ T = ∅. Therefore G has a perfect matching which, as

we know, can be computed efficiently. Let (xi; yk) and (x′i; yl) be edges appearing in the perfect

matching: then give to kid i the k-th and the l-th toy.

Problem 5. Consider the bipartite graph G(V1∪V2, E) where piles 1 up to 13 become the vertices

of the left-hand side (V1) and ranks become the vertices of the right-hand side (V2), hence each

side consists of 13 vertices. Edge (i, j) is in E if and only if there is (at least) one card of rank j in

column i, one edge (i, j). Suppose that this graph has a perfect matching M . Form the following

set of cards: for 1 ≤ i ≤ 13, pick from pile i the (or one of the) card(s) that has rank j, where

the edge (i, j) is in M . Clearly such a selection guarantees that one card is selected from each pile

and that all of the selected cards have different ranks. It remains to show that G has a perfect

matching. We will use Hall’s theorem. Consider any set S ⊆ V1. Then N(S) is the set of ranks

that the piles corresponding to the vertices in S contain. Now |S| piles contain 4|S| cards, and

these cards must contain at least |S| different ranks (a deck contains exactly 4 cards of each rank!).

Therefore N(S) = |S|. Since |V1| = |V2|, G has a perfect matching by Hall’s theorem.

Problem 6. Consider a regular bipartite graph on 2n vertices, and degree k. Let e be any edge

in this graph. We want to show that e can be included in some perfect matching. We will use

induction on the degree k of the graph.

Base case: For k = 1 all edges in the graph are included in the perfect matching, therefore e is

included.

Induction hypothesis: Assume that for k − 1, every edge of the (k − 1)-regular bipartite graph

on 2n vertices can be included in a perfect matching.

Inductive step: Consider a k-regular bipartite graph on 2n vertices. Fix some edge e in the graph.

By Hall’s theorem, we know that there is a perfect matching in this graph. If e is included in the
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perfect matching we are done. Otherwise, delete all edges of the perfect matching from the graph.

The remaining graph G′ is a (k−1)-regular bipartite graph, and by the induction hypothesis, every

edge of G′ can be included in a perfect matching for G′, and therefore so can e. Since every PM

for G′ is a PM for G too (because G′ ⊂ G), we conclude that e can be included in some PM for G.

Problem 7. We will prove the problem by induction on n− k. If n− k = 0 then n = k and there

is nothing to prove. For n− k = 1 we proceed as follows. Since n− k = 1, we have k = n− 1. This

means that at each row or column of the table, n− 1 cells are filled and only one cell is left empty.

We fill all the blank cells with number n. Clearly that assignment satisfies the condition of the

problem. Now suppose that if n − k = m we can fill the blank cells appropriately. i.e we can put

numbers k + 1, k + 2, . . . , n in the blank cells such that at each row and each column there exists

precisely one number i, for i = 1, 2, 3, . . . , n. We show that if n− k = m + 1, the same conclusion

holds. The idea is to choose n free cells of the table so that no two of them are in the same row or

column. If we can show that we can always find such cells, then we fill them with number k+1. The

resulting table satisfies the condition of the problem. Moreover we have n− (k+1) = n−k−1 = m

and therefore by induction, we can complete the rest of the table. Thus, we only need to show that

we can find n blank cells such that no two are in the same row or column. Let G be a bipartite

graph with the vertex set A∪B where: A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} and the edge set:

E = {(ai, bj) : The cell located in the i-th row and the j-th column of the table is blank } . Since

at each row and column of the table, there are exactly n− k blank cells, G is an r-regular bipartite

graph and has a perfect matching. This perfect matching corresponds to n free cells such that now

two of them are in the same row or column and therefore we are done.
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