ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Exercise 7

Graph Theory Applications
Date: April 25, 2013
Problem 1. If G is bipartite, every subgraph H of G is also bipartite. Now take the larger partition of H. It obviously forms an independent set of H which contains at least half the vertices of H. Conversely suppose that for every subgraph H of G we have $\alpha(H) \geq|V(H)| / 2$. We want to show that G is a bipartite graph. If it is not, then G has an odd cycle H. Since $\alpha(H)<|V(H)| / 2$, we have a contradiction.

Problem 2. Represent the conferences by vertices and join two vertices by an edge to represent the researcher who has attended those two conferences to construct graph G_{1}. Now construct graph G_{2} which is a dual of G_{1} by having one vertex for each researcher and an edge between researchers if they have attended a conference together. The statement of the problem asks for the maximum independent set of G_{2}. Notice that two researchers are strangers to each other if they do not share an edge in G_{2} and consequently do not share a vertex in G_{1}. Therefore any maximum set of strangers in G_{2} represents a maximum matching in G_{1}, which can be computed efficiently. (In fact duals of simple graphs are called line graphs and they have many interesting properties).

Problem 3. Suppose that G has m edges. Let x and y be two vertices in G which are joined by an edge. If $d(v)$ is the degree of a vertex v, for a triangle free graph $d(x)+d(y) \leq n$. This is because every vertex in the graph G is connected to at most one of x and y. Note now that

$$
\sum_{x} d^{2}(x)=\sum_{x y \in E}(d(x)+d(y)) \leq m n
$$

On the other hand, since $\sum_{x} d(x)=2 m$, by the Cauchy-Schwarz inequality

$$
\sum_{x} d^{2}(x) \geq \frac{\left(\sum_{x} d(x)\right)^{2}}{n} \geq \frac{4 m^{2}}{n}
$$

Therefore, $m \leq n^{2} / 4$. Hence, $m \leq\left\lfloor n^{2} / 4\right\rfloor$.
Problem 4. A graph G does not have an independent set of size 3 if and only if its complement \bar{G} does not contain contain a clique of size 3. A graph G has at least m edges if and only if is complement G has at atmost $\binom{n}{2}-m$ edges. If \bar{G} does not contain a triangle, the above proof shows that it must contain at most $\left\lfloor n^{2} / 4\right\rfloor$ edges. Therefore, $\binom{n}{2}-m \leq\left\lfloor n^{2} / 4\right\rfloor$ which implies that G must contain at least $\binom{n}{2}-\left\lfloor n^{2} / 4\right\rfloor$ edges, which is roughly $n^{2} / 4$.

Problem 5. Label the vertices of the complete graph K_{n} by $1,2, \ldots, n$ and color its edges by k colors, so that the color of the edge $a b$ is equal to the number of the class (among the given k classes) that contains $|a-b|$, for all a and b. Picking $n=r(3, \ldots, 3)$, we can find a monochromatic triangle corresponding to one of the colors. Suppose the numbers corresponding to the triangle are a, b, c where $a<b<c$. Notice that the numbers $x=|a-b|, y=|b-c|$ and $z=|c-a|$ lie in the same class and $x+y=z$.

