ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Solution 6

Graph Theory Applications

Date: April 18, 2013
Spring 2013

Problem 1. (a) 2
(b) 2 if n is even, 3 otherwise.
(c) For $\chi^{\prime}\left(W_{2}\right)=1, \chi^{\prime}\left(W_{3}\right)=3$, and $\chi^{\prime}\left(W_{n+1}\right)=n$ for $n \geq 3$.

Problem 2. We know that $\Delta \leq \chi^{\prime} \leq \Delta+1$. Assume $\chi^{\prime}=\Delta$. This would mean that every colour is represented at every vertex. However, any set of edges of the same color gives a matching and hance covers even number of vertices. With odd number of vertices it is not possible that any color covers every vertex, so this contradicts $\chi^{\prime}=\Delta$. We conclude that $\chi^{\prime}=\Delta+1$.

Problem 3. Consider coloring of the edges with using $q=\chi^{\prime}$ colors $1,2, \ldots, q$ and let E_{i} denote the set of edges with color i. Clearly, each of the E_{i} 's defines a matching. Then

$$
m=\left|E_{1}\right|+\left|E_{2}\right|+\ldots+\left|E_{q}\right| \leq q m^{*}
$$

The required result follows.
Problem 4. Assume w.l.o.g. that $m \geq n$, and therefore $\Delta\left(K_{m, n}\right)=m$. Let u_{0}, \ldots, u_{m-1} be the vertices on the left-hand side and v_{0}, \ldots, v_{n-1} the vertices on the right-hand side. Also, let c_{0}, \ldots, c_{m-1} be m distinct colors. We will suggest a coloring of $K_{m, n}$ with m colors and prove that it is a proper m-edge-coloring of this graph. In $K_{m, n}$, every vertex on the left-hand side is connected to every vertex on the right-hand side. Let $e_{i, j}$ be the edge connecting vertex u_{i} to vertex v_{j}, for all $0 \leq i \leq m-1,0 \leq j \leq n-1$. Then color edge $e_{i, j}$ by color $c_{(i+j) \bmod m}$.
We now need show that this coloring is correct, i.e., no vertex has any incident edges colored by the same color. First consider a vertex u_{i}. The set of edges incident to u_{i} is $e_{i, 0}, \ldots, e_{i, n-1}$ and these edges are assigned colors $c_{(i+0) \bmod m}, \ldots c_{(i+n-1) \bmod m}$. Since $n \leq m$, for $0 \leq x \leq n-1$, it holds that the $(i+x) \bmod m$ correspond to n distinct elements of $0, \ldots, m-1$. Therefore our coloring assigned different colors to each of the n edges. On the other hand, consider a vertex v_{j}. The set of edges incident to v_{j} is $e_{0, j}, \ldots, e_{m-1, j}$ and is assigned colors $c_{(0+j) \bmod m}, \ldots, c_{(m-1+j) \bmod m}$. By the same argument, for $0 \leq x \leq m-1$, we get that the $(x+j) \bmod m$ form a permutation of $0, \ldots, m-1$ (in fact, they correspond to a cyclic shift of the latter set j positions to the left) and therefore the colors assigned to the m edges are distinct. We conclude that our edge coloring is valid.

Problem 5. First note that G has even number of nodes, because $2|E|=3|V|$. Take the union of two partitions corresponding to distinct colors c_{1} and c_{2} in te 3 -colouring of G. In this subgraph every vertex has degree two (one edge for each color). Hence, this subgraph is a union of cycles. Further, since the subgraph is 2-colourable, every cycle has even edges. If the subgraph consists of
a single even cycle, then it is a Hamiltonian. If there are more than one partitions in this subgraph, then in one of the partitions we exchange colors c_{1} and c_{2}. The resulting colouring is proper with a different partitioning of the edges, which contradicts the uniqueness of the colouring. Hence the subgraph has only one partition, which is a Hamiltonian cycle.

Problem 6. Since G is 3 -regular then it must have an even number of vertices. Suppose G is Hamiltonian, then any Hamiltonian cycle of G is even, so we can color its edges properly with 2 colors, say red and blue. Now each vertex is incident with 1 red edge, 1 blue edge and 1 uncolored edge. The uncolored edges form a matching of G, so we can color all of them with the same color, say green. Thus, G must be 3 -edge-colorable, which is impossible. Therefore, G cannot be Hamiltonian.

