ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Exercise 5

Graph Theory Applications
Date: March 19, 2013
Spring 2013

Problem 1. The length of the maximum matching is exactly $\lfloor n / 2\rfloor$.
Problem 2. Use induction on n.
Problem 3. Suppose that $G(V ; E)$ is a tree with two distinct perfect matchings, M_{1} and M_{2}. Consider the graph $G^{\prime}=(V ;(M 1-M 2) \cup(M 2-M 1))$, i.e. G^{\prime} is the subgraph of G containing those edges that occur in exactly one of the matchings. G^{\prime} must have some edges because we are assuming that $M_{1} \neq M_{2}$. Hence, G^{\prime} has a connected component, C, which contains more than one vertex.

Now we will show that C contains a cycle, contradicting the assumption that G is a tree. Start at an arbitrary vertex $v_{1} \in C$. Since C is connected and both matchings are perfect, M_{1} contains an edge from v_{1} to some $v_{2} \in C$. Likewise, since M_{2} is a perfect matching, it must contain an edge from v_{2} to some $v_{3} \in C$, and furthermore, by the definition of C, the edge $\left(v_{2} ; v_{3}\right)$ is different from the edge $\left(v_{1} ; v_{2}\right)$. Continuing in this way, alternating between edges from M_{1} and M_{2}, we can continue to construct such a path for as long as we like. However, C is of finite size, and therefore, we must eventually find a cycle in C, contradicting the assumption that G was a tree.

Problem 4. Suppose that there is a perfect matching in G. This implies that $|V|=2 n$ for some n. Let M be a perfect matching. The game evolves in rounds, and at each round $k \geq 1$ first Player 1 picks a vertex and then Player 2. Let $v_{1}, v_{2}, v_{3}, v_{4}, \ldots$ be the sequence of moves, where odd indices correspond to moves of Player 1 and even indices to moves of Player 2, and the v_{i} 's are some mapping over the vertices of G. The winning strategy of Player 2 is the following: at round k, Player 2 chooses as $v_{2 k}$ the vertex that is matched with $v_{2 k-1}$ in M. He can clearly choose this vertex: it is adjacent to $v_{2 k-1}$ and has not been visited yet, since by construction, the $2 k-2$ vertices visited in the prior $k-1$ rounds are all pairs in M. Therefore Player 2 can always pick a vertex after Player 1, and therefore he has a winning strategy.

Conversely, suppose that Player 2 has a winning strategy. We need show that G has a perfect matching. We will do this by taking any non-perfect matching M and showing that there is an augmenting path for M. Then G must have a perfect matching. Consider any matching that is not perfect. Then there must be at least one vertex that is not covered by $M: M$ only covers $2|M|<|V|$ vertices (since it is not perfect). Let v_{1} be one of the vertices that are not covered by M. Suppose that Player 1 picks v_{1} as his first move. Then we know that Player 2 has a move v_{2} he can make (remember, he has a winning strategy!). Now if v_{2} is not matched in M then we simply add $\left(v_{1} ; v_{2}\right)$ to M; this is a trivial augmenting path. Otherwise, if v_{2} is matched in M, Player 1 picks as v_{3} the vertex that is matched with v_{2} in M. Since Player 2 has a winning strategy, there exists some v_{4} adjacent to v_{3} and not yet visited that he can pick. If v_{4} is in M then Player 1 can pick the vertex v_{5} that is matched to v_{4} in M; otherwise, we exhibited the augmenting path
v_{1}, \ldots, v_{5}. In other words, we continue in the same way until Player 2 (who can always pick a vertex after Player 1 since he has a winning strategy) picks a vertex not covered by M. Since M is finite, this eventually happens and with this we have found an augmenting path.

