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Problem 1. The length of the maximum matching is exactly bn/2c.

Problem 2. Use induction on n.

Problem 3. Suppose that G(V ;E) is a tree with two distinct perfect matchings, M1 and M2.

Consider the graph G′ = (V ; (M1 −M2) ∪ (M2 −M1)), i.e. G′ is the subgraph of G containing

those edges that occur in exactly one of the matchings. G′ must have some edges because we are

assuming that M1 6= M2. Hence, G′ has a connected component, C, which contains more than one

vertex.

Now we will show that C contains a cycle, contradicting the assumption that G is a tree. Start

at an arbitrary vertex v1 ∈ C. Since C is connected and both matchings are perfect, M1 contains

an edge from v1 to some v2 ∈ C. Likewise, since M2 is a perfect matching, it must contain an

edge from v2 to some v3 ∈ C, and furthermore, by the definition of C, the edge (v2; v3) is different

from the edge (v1; v2). Continuing in this way, alternating between edges from M1 and M2, we can

continue to construct such a path for as long as we like. However, C is of finite size, and therefore,

we must eventually find a cycle in C, contradicting the assumption that G was a tree.

Problem 4. Suppose that there is a perfect matching in G. This implies that |V | = 2n for some

n. Let M be a perfect matching. The game evolves in rounds, and at each round k ≥ 1 first

Player 1 picks a vertex and then Player 2. Let v1, v2, v3, v4, . . . be the sequence of moves, where

odd indices correspond to moves of Player 1 and even indices to moves of Player 2, and the vi’s

are some mapping over the vertices of G. The winning strategy of Player 2 is the following: at

round k, Player 2 chooses as v2k the vertex that is matched with v2k−1 in M . He can clearly choose

this vertex: it is adjacent to v2k−1 and has not been visited yet, since by construction, the 2k − 2

vertices visited in the prior k − 1 rounds are all pairs in M . Therefore Player 2 can always pick a

vertex after Player 1, and therefore he has a winning strategy.

Conversely, suppose that Player 2 has a winning strategy. We need show that G has a perfect

matching. We will do this by taking any non-perfect matching M and showing that there is an

augmenting path for M . Then G must have a perfect matching. Consider any matching that is

not perfect. Then there must be at least one vertex that is not covered by M : M only covers

2|M | < |V | vertices (since it is not perfect). Let v1 be one of the vertices that are not covered by

M . Suppose that Player 1 picks v1 as his first move. Then we know that Player 2 has a move v2 he

can make (remember, he has a winning strategy!). Now if v2 is not matched in M then we simply

add (v1; v2) to M ; this is a trivial augmenting path. Otherwise, if v2 is matched in M , Player 1

picks as v3 the vertex that is matched with v2 in M . Since Player 2 has a winning strategy, there

exists some v4 adjacent to v3 and not yet visited that he can pick. If v4 is in M then Player 1

can pick the vertex v5 that is matched to v4 in M ; otherwise, we exhibited the augmenting path



v1, . . . , v5. In other words, we continue in the same way until Player 2 (who can always pick a

vertex after Player 1 since he has a winning strategy) picks a vertex not covered by M . Since M

is finite, this eventually happens and with this we have found an augmenting path.
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