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Problem 1. Let x be the number of leaves in the tree and y the number of all other vertices. Let

e be the number of edges, then e = x + y − 1. Also,
∑

v∈V deg(v) ≥ x + 3y since every non-leaf

vertex has degree ≥ 3. Using these two observations we have:

2(x + y − 1) = 2e =
∑
v∈V

deg(v) ≥ x + 3y ≥ x + 3y − 2

from which y ≤ x follows.

Problem 2. If G is not a tree then it contains a cycle. There is least one edge (u, v) of this cycle

which is not in G′. Obviously, for these vertices dG(u, v) = 1, while in G′ they are not neighbors,

thus dG′(u, v) > 1. For the second part, we simply start a breadth first search algorithm from

vertex r (see text book for details).

Problem 3. It is easy to check that a graph that contains k edge-disjoint spanning trees on the n

nodes satisfies property 3. In order to satisfy property 2, the graph should consist of exactly k edge-

disjoint spanning trees, therefore contain k(n− 1) edges. One way to construct such a graph is by

starting with the complete graph on n vertices, find a spanning tree and remove it. Then on the

remaining graph, find another spanning tree and remove it. Continue like this to find the k desired

trees. In other words, starting with the complete graph keep exactly k(n− 1) edges corresponding

to k edge-disjoint spanning trees, and delete all other edges. Of course, you have to make sure that

the graph does not get disconnected due to the removal of the spanning tree edges at any point

of time. We don’t prove it here, but for any k ≤ bn/2c it is always possible to find such spanning

trees.

Problem 4. The “only if” direction is easy. Let T = (V,E) be a tree with n vertices. Since a tree

has exactly n− 1 edges
∑n

i=1 di = 2e = 2(n− 1). For the “if” direction, we will give a construction

which given a degree sequence satisfying the given condition will produce a tree with that degree

sequence.

Suppose that d1 ≤ d2 . . . ≤ dn is the given degree sequence. We proceed by induction on the length

of the sequence. The base case for n = 2 is trivial. Assume that the claim holds for all degree

sequences of length less than n. Now for a degree sequence of length n, since d1 is the lowest degree,

d1 = 1 (why?). Also, since dn is the highest degree, dn ≥ 2 (why?). Consider the degree sequence

d2, d3, . . . , dn − 1. There are n− 1 numbers summing to 2(n− 2). By the induction hypothesis, we

have a tree T ′ corresponding to it. Now construct a new tree T with n vertices by gluing a single

vertex to the vertex of degree dn − 1 in T ′. This completes the proof.



Problem 5. A tree with 100 vertices has 99 edges. Let x be the number of nodes with degree 10.

All other nodes have at least degree one, so for the sum of degrees we have

2 · 99 ≥ 10x + 100− x = 100 + 9x.

From this x ≤ 10. It remains to show that x = 10 is possible. From the previous problem we know

that it is enough to find a degree distribution with all positive degrees for which
∑n

i=1 di = 2(n−1).

E.g. the following distribution works: 10 vertices with degree 10 and 82 vertices with degree 1 and

8 vertices with degree 2.

Problem 6. 1. Clearly, property 1 and 2 for matroids is true. For the exchange property, let

A and B be two subsets of linearly independent vectors such that |A| > |B|. Assume to the

contrary that there is no x ∈ A such that B ∪ {x} is also independent. Thus for all ei ∈ A,

ei ∈ Span(B). However, since |A| > |B|, at least two of the vectors in A are dependent,

leading to a contradiction.

2. Again, properties 1,2 are trivial to check. For the exchange property, we use the fact that

if a graph with n vertices, m edges and c connected components contains no cycles, then

n = m + c. Now if |A| > |B| and both A and B are independent, then the graph with edge

set A has fewer components then the graph with edge set B, so some edge e of A must join

vertices in different components of B; then adding e to B creates no cycle.

3. If we look at the weighted version of the matroid (2) above, the basis corresponds to precisely

the spanning trees of the graph. Then, the basis with the minimum weight corresponds to the

minimum spanning tree. The equivalence between the greedy algorithm for minimum weight

basis and Kruskal’s algorithm follows easily.
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