ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
 School of Computer and Communication Sciences

Exercise 3

Graph Theory Applications
Date: March 7, 2012
Spring 2013

Problem 1. A permutation matrix is a matrix obtained by permuting the rows of the $n \times n$ identity matrix according to some permutation π of the numbers 1 to n, where

$$
\pi=\{\pi(1), \pi(2), \ldots, \pi(n)\}
$$

Every row and column therefore contains precisely a single 1 with 0 s everywhere else, and every permutation corresponds to a unique permutation matrix.

For example, if matrix P is a 3×3 matrix defined by permutation

$$
\pi=\{\pi(1)=1, \pi(2)=3, \pi(3)=2\}
$$

then $P A P^{T}$ is given by

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \cdot\left(\begin{array}{lll}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,1} & a_{2,2} & a_{2,3} \\
a_{3,1} & a_{3,2} & a_{3,3}
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)= \\
\left(\begin{array}{ccc}
a_{1,1} & a_{1,2} & a_{1,3} \\
a_{3,1} & a_{3,2} & a_{3,3} \\
a_{2,1} & a_{2,2} & a_{2,3}
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
a_{1,1} & a_{1,3} & a_{1,2} \\
a_{3,1} & a_{3,3} & a_{3,2} \\
a_{2,1} & a_{2,3} & a_{2,2}
\end{array}\right)
\end{gathered}
$$

It is easy to show (you should do it!) that left multiplying a matrix A by P results in permuting the rows of A according to π, i.e., row i of A becomes row $\pi(i)$ of $P A$, and right multiplying A by P^{T} results in permuting the columns of A according to π, i.e., column j of A becomes column $\pi(j)$ of $A P^{T}$. Therefore, the (i, j)-th entry of A, henceforth denoted as $A_{i, j}$, appears as the $(\pi(i), \pi(j))$-th entry of $P A P^{T}$.

Now suppose that $A_{H}=P A_{G} P^{T}$. Then we know that for all i, j,

$$
A_{H_{i, j}}=\left(P A_{G} P^{T}\right)_{i, j} \Longrightarrow A_{H_{\pi(i), \pi(j)}}=\left(P A_{G} P^{T}\right)_{\pi(i), \pi(j)}=A_{G_{i, j}}
$$

where the last equality follows from the discussion above. We conclude that if vertices i and j of G are adjacent then vertices $\pi(i)$ and $\pi(j)$ of H are adjacent (since the corresponding entries of the adjacency matrices are the same). Then letting $\theta(i)=\pi_{i}$ map the vertices of G to the vertices of H we conclude that two vertices i and j are adjacent in G if and only if their images $\theta(i)$ and $\theta(j)$ are adjacent in H, and therefore G and H are isomorphic.

Problem 2. Let A be the incidence matrix of dimension $m \times n$ as in the hint. Our goal is to show that the rows of A are linearly independent over the binary field, which is equivalent to showing that the rank of A is m under binary operations. We claim that this will immediately imply that no more than n clubs can be formed under conditions 1 and 2 . Indeed, since for any $m \times n$ matrix A it holds that $\operatorname{rank}(A) \leq \min \{n, m\}$ showing that $\operatorname{rank}(A)=m$ will imply that $n \geq m$, and therefore will complete the proof.
Consider the $m \times m$ matrix $A A^{\top}$. By the known inequality, $\operatorname{rank}\left(A A^{\top}\right) \leq \operatorname{rank}(A)$. So it suffices to show that $\operatorname{rank}\left(A A^{\top}\right)=m$. It is now easy to check that rules 1 and 2 result in $A A^{\top}$ being the $m \times m$ identity matrix, hence $\operatorname{rank}\left(A A^{\top}\right)=m$.

Problem 3. Remember that a tournament is a complete graph with an orientation assigned to each edge. The definition of a tournament ensures that $A+A^{\top}=J-I$, where J is the matrix with all 1 elements and I is the identity matrix. We prove that the rank of A is at least $n-1$ by contradiction: Assume the rank of A is at most $n-2$; i.e., there are at least 2 linearly independent vectors x and y such that $x A=0$ and $y A=0$. Note furthermore that rank of J is 1 ; i.e. there is a non-zero linear combination $z=\alpha x+\beta y$ such that $z J=0$. Furthermore, $z A=0$. We now compute

$$
0=z\left(A+A^{\top}\right) z^{\top}=z(J-I) z^{\top}=-z z^{\top}<0,
$$

which contradicts the existence of non-zero z.
Problem 4. We need to show that

$$
\operatorname{det}(A-k I)=0
$$

We have,

$$
\begin{aligned}
\operatorname{det}(A-k I) & =\operatorname{det}\left(\begin{array}{cccc}
a_{1,1}-k & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2}-k & \ldots & a_{2, n} \\
\vdots & \vdots & & \vdots \\
a_{n, 1} & a_{n, 2} & \ldots & a_{n, n}-k
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
\left(\sum_{j=1}^{n} a_{1, j}\right)-k & a_{1,2} & \ldots & a_{1, n} \\
\left(\sum_{j=1}^{n} a_{2, j}\right)-k & a_{2,2}-k & \ldots & a_{2, n} \\
\vdots & \vdots & & \vdots \\
\left(\sum_{j=1}^{n} a_{n, j}\right)-k & a_{n, 2} & \ldots & a_{n, n}-k
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
0 & a_{1,2} & \ldots & a_{1, n} \\
0 & a_{2,2}-k & \ldots & a_{2, n} \\
\vdots & \vdots & & \vdots \\
0 & a_{n, 2} & \ldots & a_{n, n}-k
\end{array}\right)=0
\end{aligned}
$$

where the second equality follows from properties of the determinant and the third from the fact that in a k-regular graph, every vertex i has exactly k neighbors, therefore each row (and each column) of A sum up to k.

Problem 5. For the "if" part, we want to show that $\operatorname{det}(A+k I)=0$. If G is bipartite, then we can relabel the vertices such that A looks like

$$
A=\left(\begin{array}{cc}
0 & B \\
B^{\top} & 0
\end{array}\right)
$$

where B is a square matrix. (B is square from regularity.) So, $A+k I$ has the following structure:

$$
A+k I=\left(\begin{array}{ccccccccccc}
k & 0 & \ldots & & 0 & & & & & \\
0 & k & 0 & \ldots & 0 & & & & & \\
\vdots & \ddots & \ddots & \ddots & \vdots & & & B & & \\
0 & \ldots & 0 & k & 0 & & & & & \\
0 & \ldots & & 0 & k & & & & & \\
& & & & & k & 0 & & \ldots & & 0 \\
& & B^{\top} & & & 0 & k & 0 & \ldots & 0 \\
& & & & & \vdots & \ddots & \ddots & \ddots & \vdots \\
& & & & & 0 & \ldots & 0 & k & 0 \\
& & & & & & \ldots & & 0 & k
\end{array}\right) .
$$

Take the vector

$$
v=(\underbrace{1, \ldots, 1}_{n / 2}, \underbrace{-1, \ldots,-1}_{n / 2}) .
$$

From the regular property it is clear that

$$
v(A+k I)=0
$$

so v is a non-trivial linear combination of the rows which results 0 , thus $\operatorname{det}(A+k I)=0$.
For the "only if" part, we know that there exists a v for which

$$
\begin{equation*}
v(A+k I)=0 \tag{1}
\end{equation*}
$$

We can also assume that the largest (absolute value) element of v is 1 . (If not, we divide the vector by its largest element.) Let 1 be the i-th element of v. Consider the i-th column of $A^{\prime}=A+k I$. We know that the diagonal elements of A^{\prime} are at least k, so we have from (1) that

$$
\begin{equation*}
\sum_{j=1, j \neq i}^{n} v_{j} A_{j, i}^{\prime} \leq-k \tag{2}
\end{equation*}
$$

Also, from regularity,

$$
\begin{equation*}
\sum_{j=1, j \neq i}^{n} A_{j, i}^{\prime} \leq k \tag{3}
\end{equation*}
$$

Since v_{i} is the largest element in v, we must have that (2) and (3) are equalities and $v_{j}=-1$, if $A_{j, i}^{\prime} \neq 0$. In other words, vertex i doesn't have self-loops and every vertex j that is connected to i has $v_{j}=-1$.

Consider a j for which (i, j) is an edge. We apply the same argument on the j-th column of A^{\prime}. The same holds, only the sign switch,

$$
\begin{array}{r}
\sum_{\ell=1, \ell \neq j}^{n} v_{\ell} A_{\ell, j}^{\prime} \geq k, \\
\sum_{\ell=1, \ell \neq j}^{n} A_{\ell, j}^{\prime} \leq k,
\end{array}
$$

so $v_{\ell}=1$ for every ℓ for which (j, ℓ) is an edge. We can go on with the same reasoning and since G is connected we eventually give a constraint on every element of v being equal to 1 or -1 and none of the vertices can have self-loops. Thus every edge has the property that it connects two vertices (i, j) with $v_{i}=-v_{j}$. Consequently, the sign of the elements in v gives a partitioning of the vertices, hence G is bipartite.

Problem 6. Let $R=B B^{T}$ and let d_{i} denote the i-the diagonal entry of matrix D. We need to show $r_{i, i}=d_{i}$ for $1 \leq i \leq n$, and $r_{i, j}=a_{i, j}$ for $1 \leq i, j \leq n$ and $i=j$. Let's start by looking at the diagonal entries of R. We have

$$
r_{i, i}=\sum_{k=1}^{m} b_{i, k} b_{i, k}=\sum_{k=1}^{m} b_{i, k}^{2}
$$

Since

$$
b_{i, k}=1, \text { iff vertex } i \text { neighbors edge } k
$$

we have that $b_{i, k}^{2}=1$ iff vertex i neighbors edge k. Hence $\sum_{k=1}^{m} b_{i, k}^{2}$ counts the number of edges incident to vertex i, which is just d_{i}. Since $a_{i, i}=0$ for $1 \leq i \leq n$ in simple graphs, we conclude

$$
R_{i, i}=d+i=d_{i}+a_{i, i}
$$

We now move to entries $R_{i, j}$, with $i \neq j$. We have

$$
R_{i, j}=\sum_{k=1}^{m} b_{i, k} b_{k, j}
$$

Again by definition

$$
\begin{aligned}
b_{i, k} & =1, \text { iff vertex } i \text { neighbors edge } k, \text { and } \\
b_{k, j}^{T} & =1, \text { iff edge } k \text { neighbors vertex } j
\end{aligned}
$$

Therefore $b_{i, k} b_{k, j}^{T}=1$ iff edge k neighbors vertices i and j. Hence $\sum_{k=1}^{m} b_{i, k} b_{k, j}^{T}$ counts the number of edges that join vertices i and j, which by definition equals entry $a_{i, j}$ of the adjacency matrix (for simple graphs, this number can either be 0 or 1). The problem statement follows.

