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School of Computer and Communication Sciences

Exercise 3 Graph Theory Applications

Date: March 7, 2012 Spring 2013

Problem 1. A permutation matrix is a matrix obtained by permuting the rows of the n×n identity

matrix according to some permutation π of the numbers 1 to n, where

π = {π(1), π(2), . . . , π(n)}

Every row and column therefore contains precisely a single 1 with 0s everywhere else, and every

permutation corresponds to a unique permutation matrix.

For example, if matrix P is a 3× 3 matrix defined by permutation

π = {π(1) = 1, π(2) = 3, π(3) = 2},

then PAP T is given by

 1 0 0

0 0 1

0 1 0

 ·
 a1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ·
 1 0 0

0 0 1

0 1 0

 =

 a1,1 a1,2 a1,3
a3,1 a3,2 a3,3
a2,1 a2,2 a2,3

 ·
 1 0 0

0 0 1

0 1 0

 =

 a1,1 a1,3 a1,2
a3,1 a3,3 a3,2
a2,1 a2,3 a2,2


It is easy to show (you should do it!) that left multiplying a matrix A by P results in permuting the

rows of A according to π, i.e., row i of A becomes row π(i) of PA, and right multiplying A by P T

results in permuting the columns of A according to π, i.e., column j of A becomes column π(j) of

AP T . Therefore, the (i, j)-th entry of A, henceforth denoted as Ai,j , appears as the (π(i), π(j))-th

entry of PAP T .

Now suppose that AH = PAGP
T . Then we know that for all i, j,

AHi,j = (PAGP
T )i,j =⇒ AHπ(i),π(j) = (PAGP

T )π(i),π(j) = AGi,j

where the last equality follows from the discussion above. We conclude that if vertices i and j of G

are adjacent then vertices π(i) and π(j) of H are adjacent (since the corresponding entries of the

adjacency matrices are the same). Then letting θ(i) = πi map the vertices of G to the vertices of

H we conclude that two vertices i and j are adjacent in G if and only if their images θ(i) and θ(j)

are adjacent in H, and therefore G and H are isomorphic.



Problem 2. Let A be the incidence matrix of dimension m×n as in the hint. Our goal is to show

that the rows of A are linearly independent over the binary field, which is equivalent to showing

that the rank of A is m under binary operations. We claim that this will immediately imply that no

more than n clubs can be formed under conditions 1 and 2. Indeed, since for any m×n matrix A it

holds that rank(A) ≤ min{n,m} showing that rank(A) = m will imply that n ≥ m, and therefore

will complete the proof.

Consider the m ×m matrix AA>. By the known inequality, rank(AA>) ≤ rank(A). So it suffices

to show that rank(AA>) = m. It is now easy to check that rules 1 and 2 result in AA> being the

m×m identity matrix, hence rank(AA>) = m.

Problem 3. Remember that a tournament is a complete graph with an orientation assigned to

each edge. The definition of a tournament ensures that A + A> = J − I, where J is the matrix

with all 1 elements and I is the identity matrix. We prove that the rank of A is at least n− 1 by

contradiction: Assume the rank of A is at most n− 2; i.e., there are at least 2 linearly independent

vectors x and y such that xA = 0 and yA = 0. Note furthermore that rank of J is 1; i.e. there

is a non-zero linear combination z = αx + βy such that zJ = 0. Furthermore, zA = 0. We now

compute

0 = z(A+A>)z> = z(J − I)z> = −zz> < 0,

which contradicts the existence of non-zero z.

Problem 4. We need to show that

det(A− kI) = 0

We have,

det(A− kI) = det


a1,1 − k a1,2 . . . a1,n
a2,1 a2,2 − k . . . a2,n

...
...

...

an,1 an,2 . . . an,n − k



= det


(
∑n

j=1 a1,j)− k a1,2 . . . a1,n
(
∑n

j=1 a2,j)− k a2,2 − k . . . a2,n
...

...
...

(
∑n

j=1 an,j)− k an,2 . . . an,n − k



= det


0 a1,2 . . . a1,n
0 a2,2 − k . . . a2,n
...

...
...

0 an,2 . . . an,n − k

 = 0

where the second equality follows from properties of the determinant and the third from the fact

that in a k-regular graph, every vertex i has exactly k neighbors, therefore each row (and each

column) of A sum up to k.
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Problem 5. For the “if” part, we want to show that det(A + kI) = 0. If G is bipartite, then we

can relabel the vertices such that A looks like

A =

(
0 B

B> 0

)
,

where B is a square matrix. (B is square from regularity.) So, A+ kI has the following structure:

A+ kI =



k 0 . . . 0

B

0 k 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 k 0

0 . . . 0 k

B>

k 0 . . . 0

0 k 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 k 0

0 . . . 0 k



.

Take the vector

v = (1, . . . , 1︸ ︷︷ ︸
n/2

,−1, . . . ,−1︸ ︷︷ ︸
n/2

).

From the regular property it is clear that

v(A+ kI) = 0,

so v is a non-trivial linear combination of the rows which results 0, thus det(A+ kI) = 0.

For the “only if” part, we know that there exists a v for which

v(A+ kI) = 0. (1)

We can also assume that the largest (absolute value) element of v is 1. (If not, we divide the vector

by its largest element.) Let 1 be the i-th element of v. Consider the i-th column of A′ = A + kI.

We know that the diagonal elements of A′ are at least k, so we have from (1) that

n∑
j=1,j 6=i

vjA
′
j,i ≤ −k. (2)

Also, from regularity,

n∑
j=1,j 6=i

A′
j,i ≤ k. (3)

Since vi is the largest element in v, we must have that (2) and (3) are equalities and vj = −1, if

A′
j,i 6= 0. In other words, vertex i doesn’t have self-loops and every vertex j that is connected to i

has vj = −1.
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Consider a j for which (i, j) is an edge. We apply the same argument on the j-th column of A′.

The same holds, only the sign switch,

n∑
`=1,`6=j

v`A
′
`,j ≥ k,

n∑
`=1,` 6=j

A′
`,j ≤ k,

so v` = 1 for every ` for which (j, `) is an edge. We can go on with the same reasoning and since G

is connected we eventually give a constraint on every element of v being equal to 1 or −1 and none

of the vertices can have self-loops. Thus every edge has the property that it connects two vertices

(i, j) with vi = −vj . Consequently, the sign of the elements in v gives a partitioning of the vertices,

hence G is bipartite.

Problem 6. Let R = BBT and let di denote the i-the diagonal entry of matrix D. We need to

show ri,i = di for 1 ≤ i ≤ n, and ri,j = ai,j for 1 ≤ i, j ≤ n and i = j. Let’s start by looking at the

diagonal entries of R. We have

ri,i =
m∑
k=1

bi,kbi,k =
m∑
k=1

b2i,k

Since

bi,k = 1, iff vertex i neighbors edge k

we have that b2i,k = 1 iff vertex i neighbors edge k. Hence
∑m

k=1 b
2
i,k counts the number of edges

incident to vertex i, which is just di. Since ai,i = 0 for 1 ≤ i ≤ n in simple graphs, we conclude

Ri,i = d+ i = di + ai,i

We now move to entries Ri,j , with i 6= j. We have

Ri,j =
m∑
k=1

bi,kbk,j

Again by definition

bi,k = 1, iff vertex i neighbors edge k, and

bTk,j = 1, iff edge k neighbors vertex j

Therefore bi,kb
T
k,j = 1 iff edge k neighbors vertices i and j. Hence

∑m
k=1 bi,kb

T
k,j counts the number

of edges that join vertices i and j, which by definition equals entry ai,j of the adjacency matrix (for

simple graphs, this number can either be 0 or 1). The problem statement follows.
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