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Problem 1. A permutation matrix is a matrix obtained by permuting the rows of the n x n identity

matrix according to some permutation 7 of the numbers 1 to n, where

m=A{r(1),7(2),...,m(n)}

Every row and column therefore contains precisely a single 1 with Os everywhere else, and every
permutation corresponds to a unique permutation matrix.

For example, if matrix P is a 3 x 3 matrix defined by permutation
m={r(1) =1,7(2) = 3,7(3) = 2},

then PAPT is given by
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It is easy to show (you should do it!) that left multiplying a matrix A by P results in permuting the
rows of A according to T, i.e., row i of A becomes row (i) of PA, and right multiplying A by PT
results in permuting the columns of A according to m, i.e., column j of A becomes column 7(j) of
APT . Therefore, the (i, j)-th entry of A, henceforth denoted as 4; ; , appears as the (7 (i), 7(j))-th
entry of PAPT .

Now suppose that Ay = PAgPT . Then we know that for all i, j,

Ap,, = (PAGPT)i,j = AHW) = (PAGPT)w(i)JT(J') = 4Ac

(@) J

where the last equality follows from the discussion above. We conclude that if vertices ¢ and j of G
are adjacent then vertices (i) and 7(j) of H are adjacent (since the corresponding entries of the
adjacency matrices are the same). Then letting 0(i) = m; map the vertices of G to the vertices of
H we conclude that two vertices ¢ and j are adjacent in G if and only if their images 6(i) and 6(j)
are adjacent in H, and therefore G and H are isomorphic.



Problem 2. Let A be the incidence matrix of dimension m X n as in the hint. Our goal is to show
that the rows of A are linearly independent over the binary field, which is equivalent to showing
that the rank of A is m under binary operations. We claim that this will immediately imply that no
more than n clubs can be formed under conditions 1 and 2. Indeed, since for any m x n matrix A it
holds that rank(A4) < min{n,m} showing that rank(A) = m will imply that n > m, and therefore
will complete the proof.

Consider the m x m matrix AAT. By the known inequality, rank(AAT) < rank(A). So it suffices
to show that rank(AAT) = m. It is now easy to check that rules 1 and 2 result in AAT being the
m x m identity matrix, hence rank(AA") = m.

Problem 3. Remember that a tournament is a complete graph with an orientation assigned to
each edge. The definition of a tournament ensures that A + AT = J — I, where J is the matrix
with all 1 elements and I is the identity matrix. We prove that the rank of A is at least n — 1 by
contradiction: Assume the rank of A is at most n — 2; i.e., there are at least 2 linearly independent
vectors x and y such that A = 0 and yA = 0. Note furthermore that rank of J is 1; i.e. there
is a non-zero linear combination z = ax + By such that zJ = 0. Furthermore, zA = 0. We now
compute
0=2(A+AN)zT =2(J-1)2" = —22" <0,

which contradicts the existence of non-zero z.

Problem 4. We need to show that
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where the second equality follows from properties of the determinant and the third from the fact
that in a k-regular graph, every vertex ¢ has exactly k neighbors, therefore each row (and each
column) of A sum up to k.



Problem 5. For the “if” part, we want to show that det(A + kI) = 0. If G is bipartite, then we
can relabel the vertices such that A looks like

0 B
A:

where B is a square matrix. (B is square from regularity.) So, A + kI has the following structure:

kK 0 0
0 k 0 0
B
0 0 kK 0
0 0 k
A+ kI =
+ kK 0 0
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Take the vector
v=(1,...,1,—1,...,—1).
—— ————
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From the regular property it is clear that
v(A+kI) =0,

so v is a non-trivial linear combination of the rows which results 0, thus det(A + kI) = 0.

For the “only if” part, we know that there exists a v for which

v(A+kI) = 0. (1)

We can also assume that the largest (absolute value) element of v is 1. (If not, we divide the vector
by its largest element.) Let 1 be the i-th element of v. Consider the i-th column of A’ = A + k1.
We know that the diagonal elements of A’ are at least k, so we have from (1) that

n

Z UjA,j,z' S —k. (2)

j=1,j#i

Also, from regularity,

n
Y. A<k (3)
j=1j#i
Since v; is the largest element in v, we must have that (2) and (3) are equalities and v; = —1, if
A;-,i = 0. In other words, vertex i doesn’t have self-loops and every vertex j that is connected to ¢
has v; = —1.



Consider a j for which (i,7) is an edge. We apply the same argument on the j-th column of A’.
The same holds, only the sign switch,

n

Z vA'ej >k,

so vy = 1 for every /¢ for which (4, /) is an edge. We can go on with the same reasoning and since G
is connected we eventually give a constraint on every element of v being equal to 1 or —1 and none
of the vertices can have self-loops. Thus every edge has the property that it connects two vertices
(t,7) with v; = —v;. Consequently, the sign of the elements in v gives a partitioning of the vertices,
hence G is bipartite.

Problem 6. Let R = BBT and let d; denote the i-the diagonal entry of matrix D. We need to
show r;; = d; for 1 <i <mn,and r; j; = a;; for 1 <4, j <n and i = j. Let’s start by looking at the
diagonal entries of R. We have

m m
2
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Since
bi 1, = 1, iff vertex i neighbors edge %k

we have that b?’k = 1 iff vertex ¢ neighbors edge k. Hence ) ", b?’k counts the number of edges
incident to vertex ¢, which is just d;. Since a;; = 0 for 1 <7 <n in simple graphs, we conclude

Ri;=d+i=d;+a;;

We now move to entries R;; , with i # j. We have

m
Rij = bikbr,
k=1

Again by definition

b; ,, = 1, iff vertex i neighbors edge £, and
b;‘gj =1, iff edge k neighbors vertex j

Therefore bi,kbf ;=1 iff edge k neighbors vertices ¢ and j. Hence Y ;" b@kbf ; counts the number
of edges that join vertices 7 and j, which by definition equals entry a; ; of the adjacency matrix (for
simple graphs, this number can either be 0 or 1). The problem statement follows.



