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Problem 1. As shown in the figure, consider the complete graph on 4 vertices. This graph has a

Hamiltonian cycle. However the degrees of its vertices are 3, 3, 3, 3, so it does not have an Eulerian

(i) K4 (ii) A Bowtie graph

walk. For the second part, consider the bowtie graph shown above. It is easy to see that this graph

has an Eulerian cycle but has no Hamiltonian cycle.

Problem 2. We first show that if G is Eulerian, then d+(v) = d−(v) for every vertex v ∈ V .

Consider an Eulerian circuit. If it visits a vertex k times, it needs both to arrive and leave this

vertex, and thus the indegree and outdegree of each vertex is equal.

For the converse, assume that d+(v) = d−(v) for every v ∈ V . Since G is nontrivial and weakly

connected with all the indegrees and outdegrees equal, we can start from an arbitrary vertex and

traverse edges to find a cycle in G, say C1 = (V1, E1). Note that this is always possible as if we get

stuck somewhere, either the indegrees and outdegrees do not match or the graph is not connected.

Remove from G all edges in E1 and call the resulting graph G1. If G1 has no edges we are done. If

G1 still has edges, then G1 still has equal indegree and outdegree on all vertices and thus we can

repeat the previous argument and find another cycle C2. We can continue this procedure until there

are no more edges remaining. Now, let C1 be one of the cycles in the partition. If G only consists of

C1, then G is obviously Eulerian. Otherwise, there exists another cycle C2 with a common vertex

v with C1. We can then create a walk stitching together the cycles C1 and C2 and visiting all the

edges in them. (You should verify that this is possible). By continuing this process we can create

a closed circuit containing all edges of G. Thus G is Eulerian.

Problem 3. We will use induction on the number of vertices in the graph. Clearly the statement

holds for n = 2. Assume the statement is true for a tournament with n vertices and consider a

tournament on n+ 1 vertices. Let G′ be the graph we get from G by taking out one of the vertices,

say, vk+1 (and all of its adjacent edges). Clearly, G′ is also a tournament and by the induction

hypothesis, it has a directed Hamiltonian path, say v1 → v2 → . . . → vk. Now look at G: if there

is an edge directed from vk+1 to v1 or from vk to vk+1 we are done (just extend the path in G′ to

a path in G). Otherwise, there is an edge from v1 to vk+1 and from vk+1 to vk. There are three

possibilities:



(a) all edges from vk+1 to vi, 2 ≤ i ≤ k− 1 are directed from vk+1 to vi; then the Hamilton path is

v1 → vk+1 → v2 . . . vk;

(b) all edges from vk+1 to vi, 2 ≤ i ≤ k − 1 are directed from vi to vk+1; then the Hamilton path

is v1 → v2 . . . vk−1 → vk+1 → vk;

(c) let 1 ≤ i ≤ k − 1 be the smallest index such that there is an edge directed from vi to vk+1 and

an edge directed from vk+1 to vi+1. (There must be such an i otherwise we would be in case (a) or

(b)). Then in the path in G′, replace (vi → vi+1) by vi → vk+1 → vi+1 to get a Hamiltonian path

in G.

Problem 4. Let L = {v1, v2, . . . , vl} be the longest path in G (in the given order). First we show

that l ≥ k + 1. If l ≤ k then consider all the neighbors of the vertex vl. By assumption, vl is of

degree k or larger. This means that vl has a neighbor other than v1, v2, . . . , vl−1. But in this case

we can extend the path by 1 by including this neighbor, contradicting the maximality of L. Now

consider the vertex v1. By assumption it is connected to at least k vertices. Since L is the longest

path in G, all of the neighbors of v1 belong to this path. Further, since v1 has degree ≥ k, one of

its neighbors vt has to be from the set {vk+1, . . . , vl}. Then v1 → v2 → . . .→ vt → v1 forms a cycle

of length ≥ k + 1.
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