ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Solution 2

Graph Theory Applications
Date: February 28, 2013
Spring 2013

Problem 1. As shown in the figure, consider the complete graph on 4 vertices. This graph has a Hamiltonian cycle. However the degrees of its vertices are 3, 3, 3, 3, so it does not have an Eulerian

(i) K_{4}

(ii) A Bowtie graph
walk. For the second part, consider the bowtie graph shown above. It is easy to see that this graph has an Eulerian cycle but has no Hamiltonian cycle.

Problem 2. We first show that if G is Eulerian, then $d^{+}(v)=d^{-}(v)$ for every vertex $v \in V$. Consider an Eulerian circuit. If it visits a vertex k times, it needs both to arrive and leave this vertex, and thus the indegree and outdegree of each vertex is equal.

For the converse, assume that $d^{+}(v)=d^{-}(v)$ for every $v \in V$. Since G is nontrivial and weakly connected with all the indegrees and outdegrees equal, we can start from an arbitrary vertex and traverse edges to find a cycle in G, say $C_{1}=\left(V_{1}, E_{1}\right)$. Note that this is always possible as if we get stuck somewhere, either the indegrees and outdegrees do not match or the graph is not connected. Remove from G all edges in E_{1} and call the resulting graph G_{1}. If G_{1} has no edges we are done. If G_{1} still has edges, then G_{1} still has equal indegree and outdegree on all vertices and thus we can repeat the previous argument and find another cycle C_{2}. We can continue this procedure until there are no more edges remaining. Now, let C_{1} be one of the cycles in the partition. If G only consists of C_{1}, then G is obviously Eulerian. Otherwise, there exists another cycle C_{2} with a common vertex v with C_{1}. We can then create a walk stitching together the cycles C_{1} and C_{2} and visiting all the edges in them. (You should verify that this is possible). By continuing this process we can create a closed circuit containing all edges of G. Thus G is Eulerian.

Problem 3. We will use induction on the number of vertices in the graph. Clearly the statement holds for $n=2$. Assume the statement is true for a tournament with n vertices and consider a tournament on $n+1$ vertices. Let G^{\prime} be the graph we get from G by taking out one of the vertices, say, v_{k+1} (and all of its adjacent edges). Clearly, G^{\prime} is also a tournament and by the induction hypothesis, it has a directed Hamiltonian path, say $v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}$. Now look at G : if there is an edge directed from v_{k+1} to v_{1} or from v_{k} to v_{k+1} we are done (just extend the path in G^{\prime} to a path in G). Otherwise, there is an edge from v_{1} to v_{k+1} and from v_{k+1} to v_{k}. There are three possibilities:
(a) all edges from v_{k+1} to $v_{i}, 2 \leq i \leq k-1$ are directed from v_{k+1} to v_{i}; then the Hamilton path is $v_{1} \rightarrow v_{k+1} \rightarrow v_{2} \ldots v_{k}$;
(b) all edges from v_{k+1} to $v_{i}, 2 \leq i \leq k-1$ are directed from v_{i} to v_{k+1}; then the Hamilton path is $v_{1} \rightarrow v_{2} \ldots v_{k-1} \rightarrow v_{k+1} \rightarrow v_{k}$;
(c) let $1 \leq i \leq k-1$ be the smallest index such that there is an edge directed from v_{i} to v_{k+1} and an edge directed from v_{k+1} to v_{i+1}. (There must be such an i otherwise we would be in case (a) or (b)). Then in the path in G^{\prime}, replace $\left(v_{i} \rightarrow v_{i+1}\right)$ by $v_{i} \rightarrow v_{k+1} \rightarrow v_{i+1}$ to get a Hamiltonian path in G.

Problem 4. Let $L=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ be the longest path in G (in the given order). First we show that $l \geq k+1$. If $l \leq k$ then consider all the neighbors of the vertex v_{l}. By assumption, v_{l} is of degree k or larger. This means that v_{l} has a neighbor other than $v_{1}, v_{2}, \ldots, v_{l-1}$. But in this case we can extend the path by 1 by including this neighbor, contradicting the maximality of L. Now consider the vertex v_{1}. By assumption it is connected to at least k vertices. Since L is the longest path in G, all of the neighbors of v_{1} belong to this path. Further, since v_{1} has degree $\geq k$, one of its neighbors v_{t} has to be from the set $\left\{v_{k+1}, \ldots, v_{l}\right\}$. Then $v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{t} \rightarrow v_{1}$ forms a cycle of length $\geq k+1$.

