ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Exercise 2	Graph Theory Applications
Date: February 28, 2013	Spring 2013

Problem 1. Give an example of an undirected graph (with no multiple edges) that (i) has a Hamiltonian cycle but no Eulerian trail, (ii) has an Eulerian circuit but no Hamiltonian cycle.

Problem 2. Consider a directed graph G = (V, E) and assume that it is weakly connected. This means, the underlying undirected graph is connected. Prove that G is Eulerian if and only if $d^+(v) = d^-(v)$ for every vertex $v \in V$, where $d^+(v)$ denotes the outdegree and $d^-(v)$ the indegree of a vertex.

Problem 3. A tournament is a directed graph in which every two vertices are connected by exactly one directed edge in either of the two possible directions. Prove that every tournament has a Hamiltonian path. (*Hint*: Use induction on the number of vertices.)

Problem 4. Let G be a graph with all n vertices of degree greater than or equal to k for some integer k > 1. Prove that the circumference $G(G) \ge k + 1$.