ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Solution 1

Graph Theory Applications
Date: Feb 21, 2013
Spring 2013

Problem 1. Frame the problem as a graph with a vertex for each person and an edge between two people if they have shaken hands. Clearly, there are n vertices in the graph and the number of people vertex i has shaken hands with corresponds to the degree of the graph. We claim that, the number of different degrees in the graph can be at most $n-1$. If there is a degree 0 vertex, then there cannot be a degree $n-1$ vertex, which makes the number of degrees equal to $n-2$. On the other hand, if there is no degree 0 vertex, there are at most $n-1$ degrees $(1, \ldots, n-1)$. Since there are n people, by the pigeon-hole principle, there must be at least 2 people with the same degree, which proves the claim.

Problem 2. Consider a fixed color c_{k}, with $1 \leq k \leq 8$. Since we have 20 balls of c_{k} and they are all placed in the 6 jars, by the pigeonhole principle there exists at least one jar that contains at least two balls of color c_{k}. Clearly, this is true for all colors c_{k}, i.e.,

For every $1 \leq k \leq 8$, there is a jar j_{k} that contains at least 2 balls of color c_{k}.
But there are only 6 jars, so by the pigeonhole principle there is a jar that appears at least twice in the set $\left\{j_{1}, j_{2}, \ldots, j_{8}\right\}$, and therefore contains at least two balls of two different colors.

Problem 3. (a) No. The sum of the degrees is odd.
(b) No. In a bipartite graph $\left(V_{1} \cup V_{2}, E\right)$, the sum of degrees of nodes in V_{1} is equal to the sum of degrees of nodes in V_{2}. Hence $\sum_{v \in V_{1}} d(v)=\sum_{v \in V_{2}} d(v)=\frac{1}{2} \sum_{v \in V_{1} \cup V_{2}} d(v)=\frac{56}{2}=28$. However we cannot find an integer partition of 28 using one 5 and a few 3 s and 6 s .
(c) No. The node with degree 8 has to be adjacent to all other nodes in the graph and in particular to the two nodes with degree 1. Therefore, the node with degree 7 does not have enough neighbors.
(d) No. The sum of the degrees is 10 , which means the number of edges is 5 . On the other hand, a forest on 5 vertices can have at most 4 edges.

Problem 4. Choose a vertex x in $V(G)$ and an edge $x y \in E(G)$ and consider the sets S_{i} and their neighborhoods $N\left(S_{i}\right)$ where

$$
\begin{aligned}
& S_{0}=\{x, y\}, S_{1}=N\left(S_{0}\right) \\
& S_{i+1}=N\left(S_{i}\right) \backslash\left(S_{i-1} \cup S_{i}\right) \text { for } 1 \leq i \leq \operatorname{diam}(G)-2
\end{aligned}
$$

Clearly, by the definition of diameter, $V(G)=\cup_{i} S_{i}$ and since the maximum degree is $\Delta(G)$, $V(G) \leq 2\left(1+(\Delta(G)-1)+(\Delta(G)-1)^{2}+\ldots+(\Delta(G)-1)^{\operatorname{diam}(G)-1}\right)=2 \frac{(\Delta(G)-1)^{\operatorname{diam}(\mathrm{G})}-1}{\Delta(G)-2}$

Problem 5. The first inequality follows directly from the definitions:

$$
\operatorname{rad}(G)=\min _{x \in V} \operatorname{ecc}(x) \text { and } \operatorname{diam}(G)=\max _{x \in V} \operatorname{ecc}(x)
$$

Next, let $x^{*} \in V$ be the (or one of the) most "central" vertices in G, i.e., such that $\operatorname{ecc}\left(x^{*}\right)=\operatorname{rad}(G)$. By definition, $\operatorname{ecc}\left(x^{*}\right)=\max _{u \in V} d(x *, u)$. Therefore, for every vertex $u \in V$

$$
d\left(x^{*}, u\right) \leq \operatorname{ecc}\left(x^{*}\right)
$$

Now for every pair of vertices (u, v), the shortest path between u and v cannot be longer than the path that goes from u to v through x^{*}. Therefore,

$$
d(u, v) \leq d\left(u, x^{*}\right)+d\left(x^{*}, v\right)
$$

Combining the above two

$$
d(u, v) \leq d\left(u, x^{*}\right)+d\left(x^{*}, v\right) \leq 2 e c c\left(x^{*}\right)
$$

Let (a, b) be the (or one of the) pair of vertices such that $\operatorname{diam}(G)=d(a, b)$. Since the inequality above holds for every pair of vertices it also holds for (a, b), which proves the second inequality of the problem.

For $G=K_{3}, \operatorname{rad}(G)=\operatorname{diam}(G)$, and if G is a star, then $2 \operatorname{rad}(G)=\operatorname{diam}(G)$.

