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Problem 1. Frame the problem as a graph with a vertex for each person and an edge between

two people if they have shaken hands. Clearly, there are n vertices in the graph and the number of

people vertex i has shaken hands with corresponds to the degree of the graph. We claim that, the

number of different degrees in the graph can be at most n − 1. If there is a degree 0 vertex, then

there cannot be a degree n− 1 vertex, which makes the number of degrees equal to n− 2. On the

other hand, if there is no degree 0 vertex, there are at most n−1 degrees (1, . . . , n−1). Since there

are n people, by the pigeon-hole principle, there must be at least 2 people with the same degree,

which proves the claim.

Problem 2. Consider a fixed color ck, with 1 ≤ k ≤ 8. Since we have 20 balls of ck and they are

all placed in the 6 jars, by the pigeonhole principle there exists at least one jar that contains at

least two balls of color ck. Clearly, this is true for all colors ck, i.e.,

For every 1 ≤ k ≤ 8, there is a jar jk that contains at least 2 balls of color ck.

But there are only 6 jars, so by the pigeonhole principle there is a jar that appears at least twice

in the set {j1, j2, ..., j8}, and therefore contains at least two balls of two different colors.

Problem 3. (a) No. The sum of the degrees is odd.

(b) No. In a bipartite graph (V1 ∪ V2, E), the sum of degrees of nodes in V1 is equal to the sum

of degrees of nodes in V2. Hence
∑

v∈V1
d(v) =

∑
v∈V2

d(v) = 1
2

∑
v∈V1∪V2

d(v) = 56
2 = 28.

However we cannot find an integer partition of 28 using one 5 and a few 3s and 6s.

(c) No. The node with degree 8 has to be adjacent to all other nodes in the graph and in particular

to the two nodes with degree 1. Therefore, the node with degree 7 does not have enough

neighbors.

(d) No. The sum of the degrees is 10, which means the number of edges is 5. On the other hand,

a forest on 5 vertices can have at most 4 edges.

Problem 4. Choose a vertex x in V (G) and an edge xy ∈ E(G) and consider the sets Si and their

neighborhoods N(Si) where

S0 = {x, y}, S1 = N(S0)

Si+1 = N(Si) \ (Si−1 ∪ Si) for 1 ≤ i ≤ diam(G)− 2

Clearly, by the definition of diameter, V (G) = ∪iSi and since the maximum degree is ∆(G),

V (G) ≤ 2
(

1 + (∆(G)− 1) + (∆(G)− 1)2 + . . . + (∆(G)− 1)diam(G)−1
)

= 2
(∆(G)− 1)diam(G) − 1

∆(G)− 2



Problem 5. The first inequality follows directly from the definitions:

rad(G) = min
x∈V

ecc(x) and diam(G) = max
x∈V

ecc(x)

Next, let x∗ ∈ V be the (or one of the) most “central” vertices in G, i.e., such that ecc(x∗) = rad(G).

By definition, ecc(x∗) = max
u∈V

d(x∗, u). Therefore, for every vertex u ∈ V

d(x∗, u) ≤ ecc(x∗)

Now for every pair of vertices (u, v), the shortest path between u and v cannot be longer than the

path that goes from u to v through x∗. Therefore,

d(u, v) ≤ d(u, x∗) + d(x∗, v)

Combining the above two

d(u, v) ≤ d(u, x∗) + d(x∗, v) ≤ 2ecc(x∗)

Let (a, b) be the (or one of the) pair of vertices such that diam(G) = d(a, b). Since the inequality

above holds for every pair of vertices it also holds for (a, b), which proves the second inequality of

the problem.

For G = K3, rad(G) = diam(G), and if G is a star, then 2rad(G) = diam(G).
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