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Problem 1. Frame the problem as a graph with a vertex for each person and an edge between
two people if they have shaken hands. Clearly, there are n vertices in the graph and the number of
people vertex ¢ has shaken hands with corresponds to the degree of the graph. We claim that, the
number of different degrees in the graph can be at most n — 1. If there is a degree 0 vertex, then
there cannot be a degree n — 1 vertex, which makes the number of degrees equal to n — 2. On the
other hand, if there is no degree 0 vertex, there are at most n — 1 degrees (1,...,n—1). Since there
are n people, by the pigeon-hole principle, there must be at least 2 people with the same degree,
which proves the claim.

Problem 2. Consider a fixed color ¢, with 1 < k < 8. Since we have 20 balls of ¢; and they are
all placed in the 6 jars, by the pigeonhole principle there exists at least one jar that contains at
least two balls of color ¢. Clearly, this is true for all colors ¢y, i.e.,

For every 1 < k < 8, there is a jar ji that contains at least 2 balls of color cy.

But there are only 6 jars, so by the pigeonhole principle there is a jar that appears at least twice
in the set {j1,j2,...,Js}, and therefore contains at least two balls of two different colors.

Problem 3. (a) No. The sum of the degrees is odd.

(b) No. In a bipartite graph (V3 UV, E), the sum of degrees of nodes in V; is equal to the sum
of degrees of nodes in Va. Hence ) i, d(v) = > oy, d(v) = %Euevluvz d(v) = 2% = 28.
However we cannot find an integer partition of 28 using one 5 and a few 3s and 6s.

(¢) No. The node with degree 8 has to be adjacent to all other nodes in the graph and in particular
to the two nodes with degree 1. Therefore, the node with degree 7 does not have enough
neighbors.

(d) No. The sum of the degrees is 10, which means the number of edges is 5. On the other hand,
a forest on 5 vertices can have at most 4 edges.

Problem 4. Choose a vertex x in V(G) and an edge zy € E(G) and consider the sets .S; and their
neighborhoods N(S;) where

So = {ﬂf,y}, S1= N(SO)

Sit1 = N(SZ) \ (Sz'—l U Sl) for1 <i< diam(G) -2
Clearly, by the definition of diameter, V(G) = U;S; and since the maximum degree is A(G),
_ 1)diam(G) -1
A(G) -2

V(G) <2 (1 F(AG) = 1)+ (AG) — 12+ ...+ (A(Q) — 1)diam<G>*1) _ 86



Problem 5. The first inequality follows directly from the definitions:

rad(G) = min ecc(x) and diam(G) = max ecc(x)

Next, let z* € V be the (or one of the) most “central” vertices in G, i.e., such that ecc(z*) = rad(G).
By definition, ecc(x*) = max d(xx,u). Therefore, for every vertex u € V'
ue

d(z*,u) < ecc(z*)

Now for every pair of vertices (u,v), the shortest path between v and v cannot be longer than the
path that goes from u to v through x*. Therefore,

d(u,0) < d(u,2*) + d(z", )
Combining the above two
d(u,v) < d(u,z*) + d(z*,v) < 2ecc(z™)

Let (a,b) be the (or one of the) pair of vertices such that diam(G) = d(a,b). Since the inequality
above holds for every pair of vertices it also holds for (a,b), which proves the second inequality of
the problem.

For G = K3, rad(G) = diam(G), and if G is a star, then 2rad(G) = diam(G).



