ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 13
Information Theory and Coding
Solutions to Homework 6
November 1, 2011

Problem 1. Upon noticing $0.9^{6}>0.1$, we obtain $\{1,01,001,0001,00001,000001,0000001$, $0000000\}$ as the dictionary entries.

Problem 2.

(a) Note that with $l(u)=\left\lceil\log _{2}(1 / q(u))\right\rceil$ we have $2^{-l(u)} \leq q(u)$, and thus

$$
\sum_{u} 2^{-l(u)} \leq \sum_{u} q(u)
$$

As $q(u)=\sum_{u=1}^{K} \alpha_{k} p_{k}(u)$, we see that $\sum_{u} q(u)=\sum_{k} \alpha_{k}=1$. Thus $l(u)$ satisfies Kraft's inequality and so a prefix-free code C with codewords lengths $l(u)$ exists.
(b) Since C is a prefix free code, its expected codeword length L_{k} is at least H_{k} and we can get $0 \leq L_{k}-H_{k}$. To upper bound $L_{k}-H_{k}$, note that since $\lceil x\rceil<x+1$,

$$
\begin{aligned}
L_{k}(C) & =\sum_{u} p_{k}(u) \operatorname{length}(C(u)) \\
& \left.<\sum_{u} p_{k}(u)[1+\log (1 / q(u))]\right) \\
& =1+\sum_{u} p_{k}(u) \log (1 / q(u))
\end{aligned}
$$

Thus $L_{k}-H_{k}<1+\sum_{u} p_{k}(u) \log \left[\left(p_{k}(u) / q(u)\right)\right]$. Observe now that $q(u) \geq \alpha_{k} p_{k}(u)$, thus $p_{k}(u) / q(u) \leq 1 / \alpha_{k}$, and

$$
L_{k}-H_{k}<1+\sum_{u} p_{k}(u) \log \left(1 / \alpha_{k}\right)=1+\log \left(1 / \alpha_{k}\right) .
$$

(c) Choosing $\alpha_{k}=1 / K$ for each k, we get the desired conclusion.
(d) We can view the source as producing a sequence of 'supersymbols' each consisting of a block of L letters. Applying part (c) to this 'supersource', and noticing that the entropy of the supersymbols is $H\left(U_{1}, \ldots, U_{L}\right)=L H(U)$, we see that there is a prefix-free code for which
$E_{k}\left[\right.$ number of bits to describe a supersymbol] $-L H_{k} \leq 1+\log _{2} K$.
for each k. Dividing the above by L we get the desired conclusion.

Problem 3.

(a) The intermediate nodes of a tree have the property that if w is an intermediate node, then so are its ancestors. Conversely, as we remark on the notes on Tunstall coding, if a set of nodes has this property, it is the intermediate nodes of some tree. Thus, all we need to show is that $w \in S$ implies that its prefixes are also in S.
Suppose v is a prefix of w, and $v \neq w$. Then $p_{j}(v)>p_{j}(w)$. Thus, $\hat{p}(v)>\hat{p}(w)$. Since S is constructed by picking nodes with highest possible values of \hat{p}, we see that if $w \in S$, then $v \in S$.
From class, we know that if a K-ary tree has α intermediate nodes, the tree has $1+(K-1) \alpha$ leaves.
(b) Since S contains the α nodes with the highest value of \hat{p}, no node outside of S can have strictly larger \hat{p} than any node in S. Thus, $\hat{p}(w) \leq Q$.
(c) From part (b) $p_{j}(w) \leq \hat{p}(w) \leq Q$. Thus, $\log \left(1 / p_{j}(w)\right) \geq \log (1 / Q)$. Multiplying both sides by $p_{j}(w)$ and summing over all W we get

$$
H_{j}(W) \geq \log (1 / Q)
$$

(d) For any leaf w in W we have

$$
\begin{aligned}
p_{1}(w) & =p_{1}(\text { parent of } w) p_{1}(\text { last letter of } w) \\
& \geq p_{1}(\text { parent of } w) p_{1, \text { min }}
\end{aligned}
$$

For a leaf w in $W_{1}, p_{1}($ parent of $w)=\hat{p}($ parent of $w) \geq Q$. Thus, all leaves in W_{1} have $p_{1}(w) \geq Q p_{1, \text { min }}$. Now

$$
1=\sum_{w \in W} p_{1}(w) \geq \sum_{w \in W_{1}} p_{1}(w) \geq\left|W_{1}\right| Q p_{1, \min }
$$

(e) The same argument as in (d) establishes that $\left|W_{2}\right| Q p_{2, \min } \leq 1$. Thus

$$
|W|=\left|W_{1} \cup W_{2}\right| \leq\left|W_{1}\right|+\left|W_{2}\right| \leq \frac{1}{Q}\left[1 / p_{1, \min }+1 / p_{2, \min }\right] .
$$

(f) By part (e) $\log (W) \leq \log \left(\frac{1}{Q}\right)+\log \left(1 / p_{1, \min }+1 / p_{2, \text { min }}\right)$. By part (c) $\log (1 / Q) \leq$ $H_{j}(W)$, we also know $H_{j}(W)=H_{j}(U) E_{j}[$ length $(\mathrm{W})]$. Thus using $\lceil x\rceil<x+1$,

$$
\begin{align*}
\rho_{j} & =\frac{\lceil\log (|W|)\rceil}{E_{j}[\operatorname{leng} \operatorname{th}(\mathrm{~W})]} \\
& <\frac{1+H_{j}(U) E_{j}[\operatorname{length}(\mathrm{~W})]+\log \left(1 / p_{1, \min }+1 / p_{2, \min }\right)}{E_{j}[\operatorname{length}(\mathrm{~W})]} \\
& =H_{j}(U)+\frac{1+\log \left(1 / p_{1, \min }+1 / p_{2, \min }\right)}{E_{j}[\operatorname{length}(\mathrm{~W})]} . \tag{1}
\end{align*}
$$

(g) A α gets larger, since $|W|=1+(K-1) \alpha, \log (|W|)$ gets larger. As we saw in part (f) $H_{j}(W)$ is lower bounded by $\log (|W|)-\log \left(1 / p_{1, \min }+1 / p_{2, \min }\right)$, so $H_{j}(W)$ gets larger too. Furthermore, $E_{j}[$ length $(\mathrm{W})]=H_{j}(W) / H_{j}(U)$, and thus so as α gets large $E_{j}[$ length $(\mathrm{W})]$ gets larger also. Thus, as α gets large, we see that the right hand side of (1) approaches $H_{j}(U)$.

Problem 4. Let $s(m)=0+1+\cdots+(m-1)=m(m-1) / 2$. Suppose we have a string of length $n=s(m)$. Then, we can certainly parse it into m words of lengths $0,1, \ldots$, ($m-1$), and since these words have different lengths, we are guaranteed to have a distinct parsing. Since a parsing with the maximal number of distinct words will have at least as many words as this particular parsing, we conclude that whenever $n=m(m-1) / 2, c \geq m$.

Now, given n, we can find m such that $s(m-1) \leq n<s(m)$. A string with n letters can be parsed into $m-1$ distinct words by parsing its initial segment of $s(m-1)$ letters with the above procedure, and concatenating the leftover letters to the last word. Thus, if a string can be parsed into $m-1$ distinct words, then $n<s(m)$, and in particular, $n<s(c+1)=c(c+1) / 2$.

From above, it is clear that no sequence will meet the bound with equality. On the other hand, an all zero string of length $s(m)$ can be parsed into at most m words: in this case distinct words must have distinct lengths.

