ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 11
Information Theory and Coding
Solutions to homework 5
Problem 1. For a Markov chain, given X_{0} and X_{n} are independent given X_{n-1}. Thus

$$
H\left(X_{0} \mid X_{n} X_{n-1}\right)=H\left(X_{0} \mid X_{n-1}\right)
$$

But, since conditioning reduces entropy,

$$
H\left(X_{0} \mid X_{n} X_{n-1}\right) \leq H\left(X_{0} \mid X_{n}\right)
$$

Putting the above together we see that $H\left(X_{0} \mid X_{n-1}\right) \leq H\left(X_{0} \mid X_{n}\right)$.
Problem 2. (a) Since the words of a valid and prefix condition dictionary reside in the leaves of a full tree, the Kraft inequality must be satisfied with equality: Consider climbing up the tree starting from the root, choosing one of the D branches that climb up from a node with equal probability. The probability of reaching a leaf at depth l_{i} is then $D^{-l_{i}}$. Since the climbing process will certainly end in a leaf, we have

$$
1=\operatorname{Pr}(\text { ending in a leaf })=\sum_{i} D^{-l_{i}}
$$

(b) Multiplying both sides of the expression above by $D^{l_{\max }}$, where $l_{\max }$ is the maximum length of a string, we have

$$
D^{l_{\max }}=\sum_{i} D^{l_{\max }-l_{i}}
$$

We also have that $\forall j \geq 0, D^{j}=1 \bmod (D-1)$. Taking $\bmod (D-1)$ on both sides of the above expression, we have that

$$
\begin{aligned}
1 & =\left(\sum_{i} D^{l_{\max }-l_{i}}\right) \bmod (D-1) \\
& =\left(\sum_{i} D^{l_{\max }-l_{i}} \bmod (D-1)\right) \bmod (D-1) \\
& =\left(\sum_{i} 1\right) \bmod (D-1) \\
& =(\text { Number of words }) \bmod (D-1)
\end{aligned}
$$

(c) If the dictionary is valid but not prefix-free, by removing all words that already have a prefix in the dictionary we would obtain a valid prefix-free dictionary. Since this reduced dictionary would satisfy the Kraft inequality with equality, the extra words would cause the inequality to be violated.
Problem 3.
(a) The number of 100-bit binary sequences with three or fewer ones is

$$
\binom{100}{0}+\binom{100}{1}+\binom{100}{2}+\binom{100}{3}=1+100+4950+161700=166751
$$

The required codeword length is $\left\lceil\log _{2} 166751\right\rceil=18$. (Note that the entropy of the source is $-0.005 \log _{2}(0.005)-0.995 \log _{2}(0.995)=0.0454$ bits, so 18 is quite a bit larger than the 4.5 bits of entropy per 100 source letters.)
(b) The probability that a 100 -bit sequence has three or fewer ones is

$$
\sum_{i=0}^{3}\binom{100}{i}(0.005)^{i}(0.995)^{100-i}=0.60577+0.30441+0.7572+0.01243=0.99833
$$

Thus the probability that the sequence that is generated cannot be encoded is $1-$ $0.99833=0.00167$.
(c) In the case of a random variable S_{n} that is the sum of n i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}$, Chebyshev's inequality states that

$$
\operatorname{Pr}\left(\left|S_{n}-n \mu\right| \geq a\right) \leq \frac{n \sigma^{2}}{a^{2}}
$$

where μ and σ^{2} are the mean and variance of X_{i}. (Therefore $n \mu$ and $n \sigma^{2}$ are the mean and variance of S_{n}.) In this problem, $n=100, \mu=0.005$, and $\sigma^{2}=(0.005)(0.995)$. Note that $S_{100} \geq 4$ if and only if $\left|S_{100}-100(0.005)\right| \geq 3.5$, so we should choose $a=3.5$. Then

$$
\operatorname{Pr}\left(S_{100} \geq 4\right) \leq \frac{100(0.005)(0.995)}{(3.5)^{2}} \approx 0.04061
$$

This bound is much larger than the actual probability 0.00167 .

Problem 4.

(a) Since the X_{1}, \ldots, X_{n} are i.i.d., so are $q\left(X_{1}\right), q\left(X_{2}\right), \ldots, q\left(X_{n}\right)$, and hence we can apply the strong law of large numbers to obtain

$$
\begin{aligned}
\lim -\frac{1}{n} \log q\left(X_{1}, \ldots, X_{n}\right) & =\lim -\frac{1}{n} \sum \log q\left(X_{i}\right) \\
& =-E[\log q(X)] \quad \text { w.p. } 1 \\
& =-\sum p(x) \log q(x) \\
& =\sum p(x) \log \frac{p(x)}{q(x)}-\sum p(x) \log p(x) \\
& =D(p \| q)+H(X) .
\end{aligned}
$$

(b) Again, by the strong law of large numbers,

$$
\begin{aligned}
\lim -\frac{1}{n} \log \frac{q\left(X_{1}, \ldots, X_{n}\right)}{p\left(X_{1}, \ldots, X_{n}\right)} & =\lim -\frac{1}{n} \sum \log \frac{q\left(X_{i}\right)}{p\left(X_{i}\right)} \\
& =-E\left[\log \frac{q(X)}{p(X)}\right] \quad \text { w.p. } 1 \\
& =-\sum p(x) \log \frac{q(x)}{p(x)} \\
& =\sum p(x) \log \frac{p(x)}{q(x)} \\
& =D(p \| q)
\end{aligned}
$$

Problem 5.

(a) Let I be the set of intermediate nodes (including the root), let N be the set of nodes except the root and let L be the set of all leaves. For each $n \in L$ define $A(n)=\{m \in N: m$ is an ancestor of $n\}$ and for each $m \in N$ define $D(m)=\{n \in$ $L: n$ is a descendant of $m\}$. We assume each leaf is an ancestor and a descendant of itself. Then

$$
\begin{aligned}
E[\text { distance to a leaf }]=\sum_{n \in L} P(n) \sum_{m \in A(n)} & d(m) \\
& =\sum_{m \in N} d(m) \sum_{n \in D(m)} P(n)=\sum_{m \in N} P(m) d(m) .
\end{aligned}
$$

(b) Let $d(n)=-\log Q(n)$. We see that $-\log P\left(n_{j}\right)$ is the distance associated with a leaf. From part (a),

$$
\begin{aligned}
H(\text { leaves }) & =E[\text { distance to a leaf }] \\
& =\sum_{n \in N} P(n) d(n) \\
& =-\sum_{n \in N} P(n) \log Q(n) \\
& =-\sum_{n \in N} P(\text { parent of } n) Q(n) \log Q(n) \\
& =-\sum_{m \in I} P(m) \sum_{n: n \text { is a child of } m} Q(n) \log Q(n) \\
& =\sum_{m \in I} P(m) H_{m^{\prime}}
\end{aligned}
$$

(c) Since all the intermediate nodes of a valid and prefix condition dictionary have the same number of children with the same set of Q_{n}, each $H_{n}=H$. Thus H (leaves) $=$ $H \sum_{n \in I} P(n)=H E[L]$.

