ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 3
Solutions to homework 1

Information Theory and Coding
Sep. 27, 2011

Problem 1. Note that $E_{0}=E_{1} \cup E_{2} \cup E_{3}$.
(a) (1) For disjoint events, $P\left(E_{0}\right)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)$, so $P\left(E_{0}\right)=3 / 4$.
(2) For independent events, $1-P\left(E_{0}\right)$ is the probability that none of the events occur, which is the product of the probabilities that each one doesn't occur. Thus $1-P\left(E_{0}\right)=(3 / 4)^{3}$ and $P\left(E_{0}\right)=37 / 64$.
(3) If $E_{1}=E_{2}=E_{3}$, then $E_{0}=E_{1}$ and $P\left(E_{0}\right)=1 / 4$.
(b) (1) From the Venn diagram in Fig. 1, $P\left(E_{0}\right)$ is clearly maximized when the events are disjoint, so $\max P\left(E_{0}\right)=3 / 4$.

Figure 1: Venn Diagram for problem 1 (b)(1)
(2) The intersection of each pair of sets has probability $1 / 16$. As seen in Fig. 2, $P\left(E_{0}\right)$ is maximized if all these pairwise intersections are identical, in which case $P\left(E_{0}\right)=3(1 / 4-1 / 16)+1 / 16=5 / 8$. One can also use the formula $P\left(E_{0}\right)=$ $P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)-P\left(E_{1} \cap E_{2}\right)-P\left(E_{1} \cap E_{3}\right)-P\left(E_{2} \cap E_{3}\right)+P\left(E_{1} \cap E_{2} \cap E_{3}\right)$, and notice that all the terms except the last is fixed by the problem, and the last term cannot be made more than $\min _{i, j} P\left(E_{i} \cap E_{j}\right)=1 / 16$.

Figure 2: Venn Diagram for problem 1 (b)(2)
Problem 2. Let L be the event that the loaded die is picked and H the event that the honest die is picked. Let A_{i} be the event that i is turned up on the first roll, and B_{i} be the event that i is turned up on the second roll. We are given that $P(L)=1 / 3, P(H)=2 / 3$; $P\left(A_{1} \mid L\right)=2 / 3 ; P\left(A_{i} \mid L\right)=1 / 15 \quad 2 \leq i \leq 6 ; P\left(A_{i} \mid H\right)=1 / 6 \quad 1 \leq i \leq 6$. Then

$$
P\left(L \mid A_{1}\right)=\frac{P\left(L, A_{1}\right)}{P\left(A_{1}\right)}=\frac{P\left(A_{1} \mid L\right) P(L)}{P\left(A_{1} \mid L\right) P(L)+P\left(A_{1} \mid H\right) P(H)}=\frac{2}{3} .
$$

This is the probability that the loaded die was picked conditional on the first roll showing a 1. For two rolls we make the assumption from the physical mechanism involved in rolling a die that the outcome on the two successive rolls of a given die are independent. Thus $P\left(A_{1} B_{1} \mid L\right)=(2 / 3)^{2}$ and $P\left(A_{1} B_{1} \mid H\right)=(1 / 6)^{2}$. It follows as before that

$$
P\left(L \mid A_{1} B_{1}\right)=\frac{8}{9} .
$$

Problem 3. Since A, B, C, D form a Markov chain their probability distribution is given by

$$
\begin{equation*}
p(a) p(b \mid a) p(c \mid b) p(d \mid c) \tag{1}
\end{equation*}
$$

(a) Yes: Summing (1) over d shows that A, B, C have the probability distribution $p(a) p(b \mid a) p(c \mid b)$.
(b) Yes: The reverse of a Markov chain is also a Markov chain. Applying this to A, B, C, D and using part (a) we get that D, C, B is a Markov chain. Reversing again we get the desired result.
(c) Yes: Since A, B, C, D is a Markov chain, given C, D is independent of B, and thus $p(d \mid c)=p(d \mid(b, c))$. So (1) can be written as

$$
p(a,(b, c), d)=p(a) p((b, c) \mid a) p(d \mid(b, c)) .
$$

(d) Yes, by a similar (in fact easier) reasoning as (c).

Problem 4. No. Take for example $A=D$ and let A be independent of the pair (B, C). Then both A, B, C and B, C, A (same as B, C, D) are Markov chains. But A, B, C, D is not: A is not independent of D when B and C are given.

Problem 5.

(a) Note that the event $N=n$ is the same as the coin falling tails $n-1$ times followed by it falling heads. Since the coin flips are independent and they are fair, we get $\operatorname{Pr}(N=n)=2^{-(n-1)} 2^{-1}=2^{-n}$. Using Bayes' rule:

$$
\operatorname{Pr}(N=n \mid N \in\{n, n+1\})=\frac{\operatorname{Pr}(N=n)}{\operatorname{Pr}(N \in\{n, n+1\})}=\frac{2^{-n}}{2^{-n}+2^{-(n+1)}}=2 / 3
$$

(b) The only way we find 1 franc in the chosen box is when $N=1$ and we have chosen the box with the smaller amount of money. The other box thus contains 3 francs.
(c) If we find 3^{n} francs in the chosen box, we know that N is either n (and the other box contains 3^{n-1} francs) or $n+1$ (and the other box contains 3^{n+1} francs). Using part (a), $N=n$ with probabity $2 / 3$, and $N=n+1$ with probability $1 / 3$. Thus the expected money in the other box is

$$
\frac{2}{3} 3^{n-1}+\frac{1}{3} 3^{n+1}=\frac{11}{9} 3^{n} \quad \text { francs }
$$

(d) Indeed, no matter what we find in the chosen box, the expected amount in the other box is more then the amount found in the chosen box (3 vs 1 as in part (b) or 11/9 times as in part (c)). We thus have, with X and Y representing the amount in the two boxes,

$$
E[X \mid Y]>Y \quad \text { and } \quad E[Y \mid X]>X
$$

This appears to be a paradox if we take expectations again to obtain

$$
E[X]>E[Y] \quad \text { and } \quad E[Y]>E[X] .
$$

However, some thought reveals that $E[X]$ and $E[Y]$ do not exist, and so the last equation is without content: Since $\operatorname{Pr}(N=n)=2^{-n}$, the expected amount of money in the box with the smaller amount is $\sum_{n \geq 1} 2^{-n} 3^{n-1}$ which is a divergent series.

Problem 6.

(a)

$$
\begin{aligned}
E[X+Y] & =\sum_{x, y}(x+y) P_{X Y}(x, y) \\
& =\sum_{x, y} x P_{X Y}(x, y)+\sum_{x, y} y P_{X Y}(x, y) \\
& =\sum_{x} x P_{X}(x)+\sum_{y} y P_{Y}(y) \\
& =E[X]+E[Y] .
\end{aligned}
$$

Note that independence is not necessary here and that the argument extends to nondiscrete variables if the expectation exists.
(b)

$$
\begin{aligned}
E[X Y] & =\sum_{x, y} x y P_{X Y}(x, y) \\
& =\sum_{x, y} x y P_{X}(x) P_{Y}(y) \\
& =\sum_{x} x P_{X}(x) \sum_{y} y P_{Y}(y) \\
& =E[X] E[Y] .
\end{aligned}
$$

Note that the statistical independence was used on the second line. Let X and Y take on only the values ± 1 and 0 . An example of uncorrelated but dependent variables is

$$
P_{X Y}(1,0)=P_{X Y}(0,1)=P_{X Y}(-1,0)=P_{X Y}(0,-1)=\frac{1}{4} .
$$

An example of correlated and dependent variables is

$$
P_{X Y}(1,1)=P_{X Y}(-1,-1)=\frac{1}{2} .
$$

(c) Using (a), we have

$$
\begin{aligned}
& \sigma_{X+Y}^{2}=E\left[(X-E[X]+Y-E[Y])^{2}\right] \\
&=E\left[(X-E[X])^{2}\right]+2 E[(X-E[X])(Y-E[Y])]+E\left[(Y-E[Y])^{2}\right]
\end{aligned}
$$

The middle term, from (a), is $2(E[X Y]-E[X] E[Y])$. For uncorrelated variables that is zero, leaving us with $\sigma_{X+Y}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}$.

Problem 7. We solve the problem for a general vehicle with n wheels.
(a) Out of n ! possible orderings $(n-1)$! has the tyre 1 in its original place. Thus tyre 1 is installed in its original position with probability $1 / n$.
(b) All tyres end up in their original position in only 1 of the n ! orders. Thus the probability of this event is $1 / n!$.
(c) Let X_{i} be the indicator random variable that tyre i is installed in its original position, so that the number of tyres installed in their original positions is $N=\sum_{i=1}^{n} X_{i}$. By (a), $E\left[X_{i}\right]=1 / n$. By the linearity of expectation, $E[N]=n(1 / n)=1$. Note that the linearity of the expectation holds even if the X_{i} 's are not independent (as it is in this case).
(e) Let A_{i} be the event that the i th tyre remains in its original position. Then, the event we are interested in is the complement of the event $\bigcup_{i} A_{i}$ and thus has probability $1-\operatorname{Pr}\left(\bigcup_{i} A_{i}\right)$. Furthermore, by the inclusion/exclusion formula,

$$
\operatorname{Pr}\left(\bigcup_{i} A_{i}\right)=\sum_{i} \operatorname{Pr}\left(A_{i}\right)-\sum_{i_{1}<i_{2}} \operatorname{Pr}\left(A_{i_{1}} \cap A_{i_{2}}\right)+\sum_{i_{1}<i_{2}<i_{3}} P\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right)-\ldots
$$

The j th sum above consists of $\binom{n}{j}$ terms, each term having the value $P\left(A_{1} \cap \cdots \cap A_{j}\right)$. Note that this is the probability of the event that tyres 1 through j have remained in their original positions, and equals $(n-j)!/ n$!. Consequently,

$$
\operatorname{Pr}\left(\bigcup_{i} A_{i}\right)=\sum_{j=1}^{n}(-1)^{j-1}\binom{n}{j} \frac{(n-j)!}{n!}=\sum_{j=1}^{n}(-1)^{j-1} 1 / j!,
$$

and the event that no tyre remains in its original position has probability

$$
1-\operatorname{Pr}\left(\bigcup_{i} A_{i}\right)=\sum_{j=0}^{n} \frac{(-1)^{j}}{j!}
$$

(For the case $n=4$, the value is $3 / 8$.)

