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Solution de la série 6
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Exercice 1 Bennett 1992 Protocol.

Key Generation : From the explanation, it is clear that when di = ei, Bob measures the qubit in
the same basis that they are transmitted, i.e. the transmitted qbit state is |0〉 and the measurement
is done in Z-basis which gives |0〉 with probability 1. A similar argument holds for H |0〉. Thus when
di = ei we certainly have yi = 0. In other words P(yi = 0|di = ei) = 1 and P(yi = 1|di = ei) = 0.
However, when di 6= ei then for example the transmitted state is |ψ〉 = H |0〉 but the measurement is
done in the Z-basis which results in |0〉 or |1〉 with equal probability because | 〈0| ψ〉 |2 = | 〈1| ψ〉 |2 =
(1/
√

2)2 = 1/2. In other words P(yi = 0|di 6= ei) = 1
2 and P(yi = 1|di 6= ei) = 1

2 .
We observe that yi = 1 only when di 6= ei. The secret key is then generated as folllows : Alice

and Bob reveal the yi’s and keep the ei = 1− di such that yi = 1 as a secret key. The other ei and
di are discarded. Indeed if yi = 1 the Alice and Bob know that ei = 1 − di for sure. This can be
proved from the Bayes rule :

P(ei = 1− di|yi = 1) =
P(yi = 1|ei = 1− di)P(ei = 1− di)

P(yi = 1)
=

1
2 ×

1
2

1
4

= 1

In the last equalirty we used

P(yi = 1) = P(yi = 1|ei = di)P(ei = di) + P(yi = 1|ei 6= di)P(ei 6= di)

= 0× 1

2
+

1

2
× 1

2
=

1

4
.

Here we have assumed that P(ei 6= di) = P(ei = di) = 1
2 .

The length of the resulting secret key is around N P(yi = 1) = N
4 , a quarter of the length of the

main sequence.
Security Check : Alice and Bob can do a security check by exchanging a small fraction of the
secure bits via public channel. If the test is successful they keep the rest of the common substring
secure : thus they have succeeded in generating a common secure string. If there is no attack from
Eve’s side and the transmission channel is perfect, then as we explained we have ei = 1−di whenever
yi = 1. The test is :

P(ei = 1− di|yi = 1) = 1.

Eve’s Attack : Here we discuss only the measurement attack. Alice sends the states Hei |0〉 through
the optic fiber. Suppose Eve captures a photon and makes a measurement in the Z or the X basis.
If she chooses the Z basis she finds the result of the measurement |0〉 or |1〉. If she finds |0〉 she
sends this state to Bob. If she finds |1〉 she deduces that certainly Bob did not send the state |0〉,
and that he must have sent the state H|0〉. She sends H|0〉 to Bob. If Eve chooses the X basis she
finds the result of the measurement H|0〉 or H|1〉. If she finds H|0〉 she sends this state to Bob. If
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she finds H|1〉 she deduces that certainly Bob did not send the state H|0〉, and that he must have
sent the state |0〉. She sends |0〉 to Bob. Let Ei = 0, 1 denote the choice of Z or X basis for Eve.

Note that we could devise other startegies for Eve but this will not help. If you wish you can
devise your own strategy and see how the security criterion is affceted. Here we stick to the above
strategy for Eve. Summarizing, we see that Bob receives the states Hei+Ei |0〉.

Now Bob decodes and finds the states Hdi |yi〉 (di = 0, 1 according to the basis chosen). From
the measurement postulate

P(yi|ei, di, Ei) = |〈yi|Hei+di+Ei |0〉|2

In particular given ei = 1− di we have

P(yi = 1|ei = 1− di, Ei) = |〈yi|H1+Ei |0〉|2

Thus

P(yi = 1|ei = 1− di) = |〈1|H|0〉|2p(Ei = 0) + |〈1|H2|0〉|2P(Ei = 1)

=
1

2
P(Ei = 0)

Now let us look at the security criterion. By Bayes rule :

P(ei = 1− di|yi = 1) =
P(yi = 1|ei = 1− di)P(ei = 1− di)

P(yi = 1)

For the denominator we use (we asume that Eve’s choice of Ei is independent of Alice’s and Bob’s
choices of ei and di)

P(yi = 1) =
∑

Ei=0,1

P(yi = 1|ei 6= di, Ei)P(ei 6= di, Ei) +
∑

Ei=0,1

P(yi = 1|ei = di, Ei)P(ei = di, Ei = 1)

=
∑

Ei=0,1

|〈1|H1+Ei |0〉|2P(Ei) +
∑

Ei=0,1

|〈1|H2+Ei |0〉|2P(Ei)

= |〈1|H|0〉|2P(Ei = 0) + |〈1|H|0〉|2P(Ei = 1)

=
1

2

For the numerator,

P(yi = 1|ei = 1− di) =
∑

Ei=0,1

|〈1|H1+Ei |0〉|2P(Ei) =
1

2
P(Ei = 0)

Putting these results alltogether we obtain :

P(ei = 1− di|yi = 1) =
1
2P(Ei = 0)P(ei = 1− di)

1
2

= P(Ei = 0)P(ei = 1− di)

Supposing that P(ei 6= di) = 1
2 we see that P(ei = 1− di|yi = 1) ≤ 1

2 whatever is Eve’s strategy for
the choice of measurement basis Ei = 0, 1.
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Exercice 2

1. One has to show that
〈
Bx,y

∣∣ Bx′,y′
〉

= δx,x′δy,y′ . We show it explicitly for two cases :

〈B00| B00〉 =
1

2
(〈00|+ 〈11|)(|00〉+ |11〉)

=
1

2
(〈00| 00〉+ 〈00| 11〉+ 〈11| 00〉+ 〈11| 11〉).

Now we have

〈00| 00〉 = 〈0| 0〉 〈0| 0〉 = 1, 〈00| 11〉 = 〈0| 1〉 〈0| 1〉 = 0,

〈11| 00〉 = 〈1| 0〉 〈1| 0〉 = 0, 〈11| 11〉 = 〈1| 1〉 〈1| 1〉 = 1.

Thus we get that 〈B00| B00〉 = 1
2(1 + 0 + 0 + 1) = 1. Now let us consider

〈B00| B01〉 =
1

2
(〈00|+ 〈11|)(|01〉+ |10〉)

=
1

2
(〈00| 01〉+ 〈00| 10〉+ 〈11| 01〉+ 〈11| 10〉)

=
1

2
(0 + 0 + 0 + 0) = 0.

2. The proof is by contradiction. Suppose there exist a1, b1 and a2, b2 such that

|B00〉 = (a1 |0〉+ b1 |1〉)⊗ (a2 |0〉+ b2 |1〉).

Then we must have

1

2
(|00〉+ |11〉) = a1a2 |00〉+ a1b2 |01〉+ b1a2 |10〉+ a2b2 |11〉 .

Since the states |00〉 , |01〉 , |10〉 , |11〉 form a basis one has

1

2
= a1a2,

1

2
= b1b2, a1b2 = 0, b1a2 = 0.

The third equality indicates that either a1 = 0 or b2 = 0 (or both). If a1 = 0 we get a
contradiction with the first equation. If on the other hand b2 = 0, we get a contradiction with
the second one. Therefore, there does not exist |ψ1〉 and |ψ2〉 such that |B00〉 can be written
as |ψ1〉 ⊗ |ψ2〉. Therefore, B00 is entangled.

3. We have

|γ〉 ⊗ |γ〉 = (cos(γ) |0〉+ sin(γ) |1〉)⊗ (cos(γ) |0〉+ sin(γ) |1〉)
= cos2(γ) |00〉+ cos(γ) sin(γ) |01〉+ sin(γ) cos(γ) |10〉+ sin2(γ) |11〉 .

Similarly,

|γ⊥〉 ⊗ |γ⊥〉 = cos2(γ⊥) |00〉+ cos(γ⊥) sin(γ⊥) |01〉+ sin(γ⊥) cos(γ⊥) |10〉+ sin2(γ⊥) |11〉 .

A picture shows that cos(γ⊥) = − sin(γ) and sin(γ⊥) = cos(γ) (this also allows to check
that 〈γ| γ⊥〉 = 0). Therefore, cos2(γ⊥) = sin2(γ), sin2(γ⊥) = cos2(γ) and cos(γ⊥) sin(γ⊥) =
− cos(γ) sin(γ). We find that

|γ〉 ⊗ |γ〉+ |γ⊥〉 ⊗ |γ⊥〉 = (cos2(γ) + sin2(γ)) |00〉+ (sin2(γ) + cos2(γ)) |11〉 ,

and the terms |01〉 and |10〉 cancel. Finally,

1√
2

(|γ〉 ⊗ |γ〉+ |γ⊥〉 ⊗ |γ⊥〉) =
1√
2

(|00〉+ |11〉) = |B00〉 .
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4. From the rule for the tensor product

(
a
b

)
⊗
(
c
d

)
=


a

(
c
d

)

b

(
c
d

)
 =


ac
ad
bc
bd

 ,

we get for the basis states

|0〉 ⊗ |0〉 =

(
1
0

)
⊗
(

1
0

)
=


1
0
0
0

 , |0〉 ⊗ |1〉 =

(
1
0

)
⊗
(

0
1

)
=


0
1
0
0

 ,

|1〉 ⊗ |0〉 =

(
0
1

)
⊗
(

1
0

)
=


0
0
1
0

 , |1〉 ⊗ |1〉 =

(
0
1

)
⊗
(

0
1

)
=


0
0
0
1

 .

Thus,

|B00〉 =
1√
2

(|00〉+ |11〉) =
1√
2


1
0
0
1

 ,

|B01〉 =
1√
2

(|01〉+ |10〉) =
1√
2


0
1
1
0

 ,

|B10〉 =
1√
2

(|00〉 − |11〉) =
1√
2


1
0
0
−1

 ,

|B11〉 =
1√
2

(|01〉 − |10〉) =
1√
2


0
1
−1
0

 .

4



Exercice 3

1. By definition of the tensor product :

(H ⊗ I) |x〉 ⊗ |y〉 = H |x〉 ⊗ I |y〉 = H |x〉 ⊗ |y〉 .

Also, one can use that H = 1√
2

(
1 1
1 −1

)
to show that always

H |x〉 =
1√
2

(|0〉+ (−1)x |1〉).

Thus,

(H ⊗ I) |x〉 ⊗ |y〉 =
1√
2

(|0〉 ⊗ |y〉+ (−1)x |1〉 ⊗ |y〉).

Now we apply ‘CNOT’. By linearity, we can apply it to each term separately. Thus,

(CNOT )(H ⊗ I) |x〉 ⊗ |y〉 =
1√
2

((CNOT ) |0〉 ⊗ |y〉+ (−1)x(CNOT ) |1〉 ⊗ |y〉)

=
1√
2

(|0〉 ⊗ |y〉+ (−1)x |1〉 ⊗ |y ⊕ 1〉)

= |Bxy〉 .

2. Let us first start with H ⊗ I. We use the rule

(
a b
c d

)
⊗
(
e f
g h

)
=


ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh

 ,

Thus we have

1√
2

(
1 1
1 −1

)
⊗
(

1 0
0 1

)
=

1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 .

For (CNOT), we use the definition :

(CNOT ) |x〉 ⊗ |y〉 = |x〉 ⊗ |y ⊕ x〉 ,

which implies that the matrix elements are〈
x′y′

∣∣CNOT |xy〉 = 〈x′, y′|x, y ⊗ x〉 =
〈
x′
∣∣ x〉 〈y′∣∣ y ⊕ x〉 = δxx′δy⊕x,y′ .

We obtain the following table with columns xy and rows x′y′ :

00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 0 1
11 0 0 1 0
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For the matrix product (CNOT )(H ⊗ I), we find that

(CNOT )H ⊗ I =
1√
2

(
I 0
0 X

)(
I I
I −I

)
=

1√
2

(
I I
X −X

)
,

where X =

(
0 1
1 0

)
. Thus,

(CNOT )(H ⊗ I) =
1√
2


1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

 .

One can check that for example |B00〉 = (CNOT )(H ⊗ I) |0〉 ⊗ |0〉. Finally to check the
unitarity, we have to check that UU † = U †U = I for U = H⊗I, CNOT and (CNOT )(H⊗I).
We leave this to the reader.

3. Let U = (CNOT )(H ⊗ I). We have

|Bxy〉 = U |x〉 ⊗ |y〉 ,
〈
Bx′y′

∣∣ =
〈
x′
∣∣⊗ 〈y′∣∣U †.

Thus, 〈
Bx′y′

∣∣ Bxy

〉
=
〈
x′
∣∣⊗ 〈y′∣∣U †U |x〉 ⊗ |y〉

=
〈
x′
∣∣⊗ 〈y′∣∣ I |x〉 ⊗ |y〉

=
〈
x′
∣∣ x〉 〈y′∣∣ y〉 = δxx′δyy′ .
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