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Traitement Quantique de l’Information

Exercice 1 Heisenberg Uncertainty Principle.

1. Let |φλ〉 = (A+ iλB) |ψ〉. For λ ∈ R, let us define f(λ) = 〈ψλ| ψλ〉. It is clear that for
any λ ∈ R, f(λ) ≥ 0. We also have

f(λ) = 〈ψ| (A† − iλ∗B†)(A+ iλB) |ψ〉 = 〈ψ| (A− iλB)(A+ iλB) |ψ〉
= 〈ψ|A2 |ψ〉+ λ2 〈ψ|B2 |ψ〉+ iλ 〈ψ| (AB −BA) |ψ〉
= 〈ψ|A2 |ψ〉+ λ2 〈ψ|B2 |ψ〉+ λ 〈ψ| i[A,B] |ψ〉 ,

where we used the Hermitian property of A and B and the fact that λ ∈ R, thus
λ = λ∗. First one can simply check that the operator i[A,B] is a Hermitian operator
so the last term 〈ψ| i[A,B] |ψ〉 is real-valued so f(λ) is real-valued (this was already
clear). We see that f(λ) is a second order polynomial in λ ∈ R. As it is non-negative
for every value of λ, it results that its discriminant must be negative or zero (for a
quadratic equation ax2 + bx + c = 0 the discriminant is defined by ∆ = b2 − 4ac).
Hence, we get

| 〈ψ| [A,B] |ψ〉 |2 ≤ 4 〈ψ|A2 |ψ〉 〈ψ|B2 |ψ〉 .

As we assumed that the operators have zero mean, 〈ψ|A |ψ〉 = 〈ψ|B |ψ〉 = 0, we obtain
that

∆A∆B ≥
√
| 〈ψ| [A,B] |ψ〉 |2

4
=
| 〈ψ| [A,B] |ψ〉 |

2

2. This time we will use Cauchy-Schwartz inequality that | 〈a| b〉 |2 ≤ 〈a| a〉 〈b| b〉 for any
vector a and b in any Hilbert space. We also use the following inequality that for any
two complex numbers x and y, |x− y|2 ≤ 2(|x|2 + |y|2) which one can simply prove.

| 〈ψ| [A,B] |ψ〉 |2 = | 〈ψ|AB |ψ〉 − 〈ψ|BA |ψ〉 |2
(a)

≤ 2(| 〈ψ|AB |ψ〉 |2 + | 〈ψ|BA |ψ〉 |2)
(b)

≤ 2(〈ψ|AA† |ψ〉 〈ψ|B†B |ψ〉+ 〈ψ|BB† |ψ〉 〈ψ|A†A |ψ〉)
(c)
= 4 〈ψ|A2 |ψ〉 〈ψ|B2 |ψ〉 = 4(∆A)2(∆B)2,

where (a) follows from the inequality for complex numbers just mentioned, (b) fol-
lows by applying the Cauchy-Schwartz inequality and (c) follows from the Hermitian
property of A and B.
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3. For ψ = |↑〉 and A = σx and B = σy, we have

Ā = 〈ψ|A |ψ〉 = (1 0)

(
0 1
1 0

)(
1
0

)
= 0,

Ā2 = 〈ψ|A2 |ψ〉 = (1 0)

(
1 0
0 1

)(
1
0

)
= 1,

B̄ = 〈ψ|B |ψ〉 = (1 0)

(
0 −i
i 0

)(
1
0

)
= 0,

B̄2 = 〈ψ|B2 |ψ〉 = (1 0)

(
1 0
0 1

)(
1
0

)
= 1,

where for an operator C, C̄ denotes the average of the operator in state |ψ〉. Therefore,
we get

(∆A)2 = 〈ψ|A2 |ψ〉 − (〈ψ|A |ψ〉)2 = 1, (∆B)2 = 〈ψ|B2 |ψ〉 − (〈ψ|B |ψ〉)2 = 1.

We also know that the Pauli matrices satisfy the identity [σx, σy] = 2iσz. Thus, we
have

〈ψ| [A,B] |ψ〉 = 2i(1 0)

(
1 0
0 −1

)(
1
0

)
= 2i,

which satisfies the uncertainty principle

(∆A)2(∆B)2 = 1 ≥ |2i|
2

4
=
| 〈ψ| [A,B] |ψ〉 |2

4
.

In particular, in this case the uncertainty inequality turns out to be an equality.

4. In this exercise, the state of a particle is represented by a function of coordinate variable
ψ(x). We also know how x̂ and p̂ operators transform this state function. To find the
commutator of x̂ and p̂, we take an arbitrary state function φ(x) and investigate how
[x̂, p̂] operates on it. Specifically we have

(p̂x̂)φ(x) = p̂(x̂φ(x)) = p̂(xφ(x)) = −i~ d
dx

(xφ(x)) = −i~(φ(x) + x
d

dx
φ(x)),

(x̂p̂)φ(x) = x̂(−i~ d
dx
φ(x)) = −i~x d

dx
φ(x),

which implies that [x̂, p̂]φ(x) = i~φ(x). As φ was an arbitrary function, it results that
[x̂, p̂] = i~.

Exercice 2 Bennett 1992 Protocol.

Key Generation : From the explanation, it is clear that when di = ei, Bob measures
the qubit in the same basis that they are transmitted, i.e. the transmitted qbit state is
|0〉 and the measurement is done in Z-basis which gives |0〉 with probability 1. A similar
argument holds for H |0〉. Thus when di = ei we certainly have yi = 0. In other words
P(yi = 0|di = ei) = 1 and P(yi = 1|di = ei) = 0. However, when di 6= ei then for example the
transmitted state is |ψ〉 = H |0〉 but the measurement is done in the Z-basis which results
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in |0〉 or |1〉 with equal probability because | 〈0| ψ〉 |2 = | 〈1| ψ〉 |2 = (1/
√

2)2 = 1/2. In other
words P(yi = 0|di 6= ei) = 1

2
and P(yi = 1|di 6= ei) = 1

2
.

We observe that yi = 1 only when di 6= ei. The secret key is then generated as folllows :
Alice and Bob reveal the yi’s and keep the ei = 1− di such that yi = 1 as a secret key. The
other ei and di are discarded. Indeed if yi = 1 the Alice and Bob know that ei = 1 − di for
sure. This can be proved from the Bayes rule :

P(ei = 1− di|yi = 1) =
P(yi = 1|ei = 1− di)P(ei = 1− di)

P(yi = 1)
=

1
2
× 1

2
1
4

= 1

In the last equalirty we used

P(yi = 1) = P(yi = 1|ei = di)P(ei = di) + P(yi = 1|ei 6= di)P(ei 6= di)

= 0× 1

2
+

1

2
× 1

2
=

1

4
.

Here we have assumed that P(ei 6= di) = P(ei = di) = 1
2
.

The length of the resulting secret key is around N P(yi = 1) = N
4

, a quarter of the length
of the main sequence.
Security Check : Alice and Bob can do a security check by exchanging a small fraction of
the secure bits via public channel. If the test is successful they keep the rest of the common
substring secure : thus they have succeeded in generating a common secure string. If there
is no attack from Eve’s side and the transmission channel is perfect, then as we explained
we have ei = 1− di whenever yi = 1. The test is :

P(ei = 1− di|yi = 1) = 1.

Eve’s Attack : Here we discuss only the measurement attack. Alice sends the states Hei|0〉
through the optic fiber. Suppose Eve captures a photon and makes a measurement in the
Z or the X basis. If she chooses the Z basis she finds the result of the measurement |0〉 or
|1〉. If she finds |0〉 she sends this state to Bob. If she finds |1〉 she deduces that certainly
Bob did not send the state |0〉, and that he must have sent the state H|0〉. She sends H|0〉
to Bob. If Eve chooses the X basis she finds the result of the measurement H|0〉 or H|1〉. If
she finds H|0〉 she sends this state to Bob. If she finds H|1〉 she deduces that certainly Bob
did not send the state H|0〉, and that he must have sent the state |0〉. She sends |0〉 to Bob.
Let Ei = 0, 1 denote the choice of Z or X basis for Eve.

Note that we could devise other startegies for Eve but this will not help. If you wish you
can devise your own strategy and see how the security criterion is affceted. Here we stick to
the above strategy for Eve. Summarizing, we see that Bob receives the states Hei+Ei |0〉.

Now Bob decodes and finds the states Hdi |yi〉 (di = 0, 1 according to the basis chosen).
From the measurement postulate

P(yi|ei, di, Ei) = |〈yi|Hei+di+Ei |0〉|2

In particular given ei = 1− di we have

P(yi = 1|ei = 1− di, Ei) = |〈yi|H1+Ei |0〉|2
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Thus

P(yi = 1|ei = 1− di) = |〈1|H|0〉|2p(Ei = 0) + |〈1|H2|0〉|2P(Ei = 1)

=
1

2
P(Ei = 0)

Now let us look at the security criterion. By Bayes rule :

P(ei = 1− di|yi = 1) =
P(yi = 1|ei = 1− di)P(ei = 1− di)

P(yi = 1)

For the denominator we use (we asume that Eve’s choice of Ei is independent of Alice’s and
Bob’s choices of ei and di)

P(yi = 1) =
∑
Ei=0,1

P(yi = 1|ei 6= di, Ei)P(ei 6= di, Ei) +
∑
Ei=0,1

P(yi = 1|ei = di, Ei)P(ei = di, Ei = 1)

=
∑
Ei=0,1

|〈1|H1+Ei |0〉|2P(Ei) +
∑
Ei=0,1

|〈1|H2+Ei |0〉|2P(Ei)

= |〈1|H|0〉|2P(Ei = 0) + |〈1|H|0〉|2P(Ei = 1)

=
1

2

For the numerator,

P(yi = 1|ei = 1− di) =
∑
Ei=0,1

|〈1|H1+Ei |0〉|2P(Ei) =
1

2
P(Ei = 0)

Putting these results alltogether we obtain :

P(ei = 1− di|yi = 1) =
1
2
P(Ei = 0)P(ei = 1− di)

1
2

= P(Ei = 0)P(ei = 1− di)

Supposing that P(ei 6= di) = 1
2

we see that P(ei = 1 − di|yi = 1) ≤ 1
2

whatever is Eve’s
strategy for the choice of measurement basis Ei = 0, 1.
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