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Solution de la série 13
Traitement quantique de l’information

Exercice 1 Refocusing

– One way is to find the corresponding matrices and multiply them together to show the identity.
A probably simpler way is to show that for every basis vector both right hand side and left
hand side operators give the same result. For example for |ψ0〉 = |↑↑〉, applying the matrices
starting form the right hand side one, one obtains (using that R1 flips a spin ; check this !)

|ψ1〉 = e−i
t
2

H
~ |↑↑〉 = e−itJ |ψ0〉 ,

|ψ2〉 = (R1 ⊗ I) |ψ1〉 = e−itJ |↓↑〉 ,
|ψ3〉 = e−i

t
2

H
~ |ψ2〉 = e−itJe−i

t
2

H
~ |↓↑〉 = e−itJeitJ |↓↑〉 = |↓↑〉 ,

|ψ4〉 = (R1 ⊗ I) |ψ3〉 = (R1 ⊗ I) |↓↑〉 = |↑↑〉 ,
which shows that |ψ4〉 = |ψ0〉 = (I1 ⊗ I2) |ψ0〉. One can also check this for other basis vectors
to see that the identity indeed holds.

– J << 1. Donc τ = π
4J >> π. Les π-pulses sont beaucoup plus rapides que l’évolution des

spins nucleaires. L’idée est que en injectant deux π-pulses aux instants τ
2 et τ on reforme

l’état initial et donc tout se passe comme si les deux spins n’avaient pas évolué.

Exercice 2 Realization of the SWAP gate

– To find the matrix representation, it is sufficient to find how SWAP port operates on the
basis vectors.

SWAP |↑↑〉 = |↑↑〉 =


1
0
0
0

 ,

SWAP |↑↓〉 = |↓↑〉 =


0
0
1
0

 ,

SWAP |↓↑〉 = |↑↓〉 =


0
1
0
0

 ,

SWAP |↓↓〉 = |↓↓〉 =


0
0
0
1

 .
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Putting the resulting columns together we obtain the matrix representation

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Now it is easy to check that (SWAP)(SWAP†) = I which shows that SWAP is a unitary
matrix.

– The Heisenberg Hamiltonian is obtained in the lecture notes and has the following matrix
representation

H = ~J ~σ1. ~σ2 = ~J


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 .

To compute the evolution operator e−
itH
~ , we notice that the matrix for H has the diagonal

representation A 0
B

0 C

 ,

where A = (1) and C = (1) are 1 × 1 matrices and B =

(
−1 2
2 −1

)
is a 2 × 2 matrix. It is

easy to show that for any complex number α

eαH =

eαA 0
eαB

0 eαC

 .

Thus it is sufficient to find these three matrix exponentials. A and C are numbers equal to
1, thus eαA = eαC = eα.

Now it remains to find eαB. Notice that we can write B = −I + 2X where X =

(
0 1
1 0

)
.

Notice that I and X commute with each other, i.e., IX = XI. It is not difficult to show
that the matrices that commute with each other can be treated like numbers while taking
exponentials, namely, for any commuting matrix M,N , eM+N = eMeN . (Notice that this
formula is not in general correct). Therefore, we have

eiβB = e−iβIe2iβX = e−iβ(I cos(2β) + iX sin(2β)),

where we used the Euler’s formula for X. It can be checked that at time t = π
4J , α = −iπ4 ,

thus β = −π
4 . Hence, eαA = eαB = e−i

π
4 , and

eiβB = ei
π
4 (cos(

π

2
)I − i sin(

π

2
)X) = −ieiπ4X = e−i

π
4X.

Putting all together, the evolution operator at time t = π
4J is

e−i
π
4


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

which neglecting the constant phase −π
4 is equal to the matrix for SWAP.
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– We can implement SWAP using three CNOT gates as depicted in Figure 1. To show this, one
can simply check that starting from a general state |x, y〉, with x, y ∈ {0, 1} after the first
CNOT the resulting state is |x, y ⊕ x〉, after the second CNOT the state is

|x⊕ (x⊕ y), x⊕ y〉 = |x⊕ x⊕ y, x⊕ y〉 = |y, x⊕ y〉 ,

where we used the identity x⊕ x = 0 for x ∈ {0, 1}. Finally after the third CNOT the state
is |y, (x⊕ y)⊕ y〉 = |y, x〉. Therefore the combination the three gates just swaps x and y.
Note that this gives another proof that SWAP is a unitary matrix because it can be imple-
mented as a combination of quantum gates and we know that all quantum gates are unitary.

|xi

|yi |xi

|yi

Figure 1 – Implementation of SWAP gate using three CNOT
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