Solution de la série 9 Traitement quantique de l'information II

Exercice 1 Refocusing

L'état final est

$$
\begin{aligned}
e^{-\frac{i t}{\hbar} \mathcal{H}}\left|\psi_{0}\right\rangle & =e^{-i t J \sigma_{1}^{z} \otimes \sigma_{2}^{z}} \cdot \frac{1}{2}(|\uparrow \uparrow\rangle-|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle-|\downarrow \downarrow\rangle) \\
& =\frac{1}{2}\left(e^{-i t J}|\uparrow \uparrow\rangle-e^{i t J}|\uparrow \downarrow\rangle+e^{i t J}|\downarrow \uparrow\rangle-e^{-i t J}|\downarrow \downarrow\rangle\right) \\
& =\frac{e^{-i t J}}{2}\left(|\uparrow \uparrow\rangle-e^{2 i t J}|\uparrow \downarrow\rangle+e^{2 i t J}|\downarrow \uparrow\rangle-|\downarrow \downarrow\rangle\right) .
\end{aligned}
$$

- Pour $t=\frac{\pi}{4 J}$ on a $e^{2 i t J}=e^{\frac{i \pi}{2}}=i$
$\Rightarrow\left|\psi_{\tau}\right\rangle=\frac{e^{-\frac{i \tau}{4}}}{2}(|\uparrow \uparrow\rangle-i|\uparrow \downarrow\rangle+i|\downarrow \uparrow\rangle-|\downarrow \downarrow\rangle)$.
- Supposons que l'état puisse s'écrire
$(\alpha|\uparrow\rangle+\beta|\downarrow\rangle) \otimes(\gamma|\uparrow\rangle+\delta|\downarrow\rangle)=\alpha \gamma|\uparrow \uparrow\rangle+\alpha \delta|\uparrow \downarrow\rangle+\beta \gamma|\downarrow \uparrow\rangle+\beta \delta|\downarrow \downarrow\rangle$,
alors $\alpha \gamma=1, \alpha \delta=-i, \beta \gamma=i, \beta \delta=-1$.
On peut toujours poser $\alpha=1$ (phase globale). Donc $\gamma=1, \delta=-i, \beta=i$ et $\delta=i \Rightarrow$ contradiction sur δ. Vous pouvez aussi prendre n'importe quelle valeur fixée pour α et montrer qu'une contradiction apparait.

Exercice 2 Refocusing

- One way is to find the corresponding matrices and multiply them together to show the identity. A probably simpler way is to show that for every basis vector both right hand side and left hand side operators give the same result. For example for $\left|\psi_{0}\right\rangle=|\uparrow \uparrow\rangle$, applying the matrices starting form the right hand side one, one obtains (using that R_{1} flips a spin; check this!)

$$
\begin{aligned}
& \left|\psi_{1}\right\rangle=e^{-i \frac{t}{2} \frac{\mathcal{H}}{\hbar}}|\uparrow \uparrow\rangle=e^{-i t J}\left|\psi_{0}\right\rangle, \\
& \left|\psi_{2}\right\rangle=\left(R_{1} \otimes I\right)\left|\psi_{1}\right\rangle=e^{-i t J}|\downarrow \uparrow\rangle, \\
& \left|\psi_{3}\right\rangle=e^{-i \frac{t}{2} \frac{H}{\hbar}}\left|\psi_{2}\right\rangle=e^{-i t J} e^{-i \frac{t}{2} \frac{\mathcal{H}}{\hbar}}|\downarrow \uparrow\rangle=e^{-i t J} e^{i t J}|\downarrow \uparrow\rangle=|\downarrow \uparrow\rangle, \\
& \left|\psi_{4}\right\rangle=\left(R_{1} \otimes I\right)\left|\psi_{3}\right\rangle=\left(R_{1} \otimes I\right)|\downarrow \uparrow\rangle=|\uparrow \uparrow\rangle,
\end{aligned}
$$

which shows that $\left|\psi_{4}\right\rangle=\left|\psi_{0}\right\rangle=\left(I_{1} \otimes I_{2}\right)\left|\psi_{0}\right\rangle$. One can also check this for other basis vectors to see that the identity indeed holds.

- $J \ll 1$. Donc $\tau=\frac{\pi}{4 J} \gg \pi$. Les π-pulses sont beaucoup plus rapides que l'évolution des spins nucleaires. L'idée est que en injectant deux π-pulses aux instants $\frac{\tau}{2}$ et τ on reforme l'état initial et donc tout se passe comme si les deux spins n'avaient pas évolué.

Exercice 3 Realization of the SWAP port

- To find the matrix representation, it is sufficient to find how SWAP port operates on the basis vectors.

$$
\begin{aligned}
& \operatorname{SWAP}|\uparrow \uparrow\rangle=|\uparrow \uparrow\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \\
& \operatorname{SWAP}|\uparrow \downarrow\rangle=|\downarrow \uparrow\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \\
& \operatorname{SWAP}|\downarrow \uparrow\rangle=|\uparrow \downarrow\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \\
& \operatorname{SWAP}|\downarrow \downarrow\rangle=|\downarrow \downarrow\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
\end{aligned}
$$

Putting the resulting columns together we obtain the matrix representation

$$
\mathrm{SWAP}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Now it is easy to check that $(\mathrm{SWAP})\left(\mathrm{SWAP}^{\dagger}\right)=I$ which shows that SWAP is a unitary matrix.

- The Heisenberg Hamiltonian is obtained in the lecture notes and has the following matrix representation

$$
\mathcal{H}=\hbar J \overrightarrow{\sigma_{1}} \cdot \overrightarrow{\sigma_{2}}=\hbar J\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 2 & 0 \\
0 & 2 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

To compute the evolution operator $e^{-\frac{i t \mathcal{H}}{\hbar}}$, we notice that the matrix for \mathcal{H} has the diagonal representation

$$
\left(\begin{array}{lll}
A & & \mathbf{0} \\
& B & \\
\mathbf{0} & & C
\end{array}\right)
$$

where $A=(1)$ and $C=(1)$ are 1×1 matrices and $B=\left(\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right)$ is a 2×2 matrix. It is easy to show that for any complex number α

$$
e^{\alpha \mathcal{H}}=\left(\begin{array}{ccc}
e^{\alpha A} & & \mathbf{0} \\
& e^{\alpha B} & \\
\mathbf{0} & & e^{\alpha C}
\end{array}\right)
$$

Thus it is sufficient to find these three matrix exponentials. A and C are numbers equal to 1 , thus $e^{\alpha A}=e^{\alpha C}=e^{\alpha}$.
Now it remains to find $e^{\alpha B}$. Notice that we can write $B=-I+2 X$ where $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Notice that I and X commute with each other, i.e., $I X=X I$. It is not difficult to show that the matrices that commute with each other can be treated like numbers while taking exponentials, namely, for any commuting matrix $M, N, e^{M+N}=e^{M} e^{N}$. (Notice that this formula is not in general correct). Therefore, we have

$$
e^{i \beta B}=e^{-i \beta I} e^{2 i \beta X}=e^{-i \beta}(I \cos (2 \beta)+i X \sin (2 \beta)),
$$

where we used the Euler's formula for X. It can be checked that at time $t=\frac{\pi}{4 J}$, $\alpha=-i \frac{\pi}{4}$, thus $\beta=-\frac{\pi}{4}$. Hence, $e^{\alpha A}=e^{\alpha B}=e^{-i \frac{\pi}{4}}$, and

$$
e^{i \beta B}=e^{i \frac{\pi}{4}}\left(\cos \left(\frac{\pi}{2}\right) I-i \sin \left(\frac{\pi}{2}\right) X\right)=-i e^{i \frac{\pi}{4}} X=e^{-i \frac{\pi}{4}} X
$$

Putting all together, the evolution operator at time $t=\frac{\pi}{4 J}$ is

$$
e^{-i \frac{\pi}{4}}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

which neglecting the constant phase $-\frac{\pi}{4}$ is equal to the matrix for SWAP.

- We can implement SWAP using three CNOT gates as depicted in Figure 1. To show this, one can simply check that starting from a general state $|x, y\rangle$, with $x, y \in\{0,1\}$ after the first CNOT the resulting state is $|x, y \oplus x\rangle$, after the second CNOT the state is

$$
|x \oplus(x \oplus y), x \oplus y\rangle=|x \oplus x \oplus y, x \oplus y\rangle=|y, x \oplus y\rangle,
$$

where we used the identity $x \oplus x=0$ for $x \in\{0,1\}$. Finally after the third CNOT the state is $|y,(x \oplus y) \oplus y\rangle=|y, x\rangle$. Therefore the combination the three gates just swaps x and y.
Note that this gives another proof that SWAP is a unitary matrix because it can be implemented as a combination of quantum gates and we know that all quantum gates are unitary.

Figure 1 - Implementation of SWAP gate using three CNOT

