
Chapter 7

Accessible information

In this chapter we prove a very important bound of quantum information
theory, namely Holevo’s bound. This is a general bound on the information
on the preparation of a mixed state, that can be extracted from the mixed
state by a measurement process. We will see in a later chapter that it has
important applications in channel coding theory.

7.1 Notion of accessible information

We argued in chapter 2 that non-orthogonal quantum states are not perfectly
distinguishable. The Holevo bound quantifies this statement. Suppose a
system with Hilbert space H is prepared in a mixed state {px, ρx} where ρx
are density matrices (hence the preparation of the system is a mixture of
mixed states). The total density matrix of the system is

ρ =
∑
x

pxρx

We imagine that Alice has prepared the mixture {px, ρx} but “gives only ρ” to
Bob who wants to extract information about the preparation by performing
measurements on ρ. Let us formalize the problem.

• The preparation of Alice is described by a classical random variable X
taking value x with Prob(X = x) = px.

For example Alice flip a coin: if Face is obtained with pF = 1
2
she

prepares a photon in state ρF = |0⟩⟨0|, while if Tail is obtained with
pT = 1

2
she prepares a photon in state ρT = 1√

2
(|0⟩+ |1⟩)( 1√

2
(⟨0|+ ⟨1|).
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• Bob is given ρ =
∑

x pxρx but does not know the preparation {px, ρx}.
He has full access to ρ in the sense that he can manipulate and measure
the state.

In the example

ρ =
1

2
|0⟩⟨0|+ 1

2

1√
2
(|0⟩+ |1⟩)( 1√

2
(⟨0|+ ⟨1|)

=
3

4
|0⟩⟨0|+ 1

4
|0⟩⟨1|+ 1

4
|1⟩⟨0|+ 1

4
|1⟩⟨1|

=

[
3
4

1
4

1
4

1
4

]
• Bob makes measurements with an apparatus corresponding to a mea-
surement basis {Py} where P 2

y = Py are projectors and
∑

y Py = 1.
The outcome of the measurement is a random variable Y such that

Prob(Y = y|X = x) = TrρxPy (= py|x)

This follows by the measurement postulate. We can now define a joint
probability distribution

Prob(X = x, Y = y) = pxpy|x = pxTrρxPy (= px,y)

and the marginal

Prob(Y = y) =
∑
x

pxTrρxPy = TrρPy (= py)

Note that the last equation also follows directly from the measurement
postulate applied to ρ.

In the example, suppose that Bob uses a measurement apparatus cor-
responding to the canonical basis {|0⟩⟨0|; |1⟩⟨1|}. For the conditional
distribution one obtains

py|x =

[
1 1

2

0 1
2

]
, (7.1)

for the joint distribution

px,y =

[
1
2

1
4

0 1
4

]
, (7.2)

and for the marginal

py =

[
3
4
1
4

]
. (7.3)
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• The mutual information I(X;Y ) defined from px,y is the information
about X that Bob can extract from ρ by his measurement outcomes Y .
We define the accessible information as the maximum possible mutual
information obtained by the best possible measurement

Acc({px, ρx}) = sup{Py}I(X;Y )

In the example we have H(X) = ln 2, H(Y ) = ln 4 − 3
4
ln 3 and

H(X, Y ) = 3
2
ln 2. Thus for the particular measurement in the canoni-

cal basis I(X;Y ) = 3
2
ln 2− 3

4
ln 3 = 0.215. This equals 0.31 ln 2 so Bob

retrieves 0.31 bits from this type of measurement. He can do better
by choosing a more clever basis but, since the states ρF and ρT are
not perfectly distinguishable, his accessible information will always be
strictly smaller than 1 bit (the entropy of X). An interesting question
partly answered in the next paragraph is : how much smaller is it ?

Note that if ρx are pure orthogonal states they form a subset of a basis
of the Hilbert space. Thus by choosing this basis as a measurement basis
Bob gets Y = X so that I(X;Y ) = H(X). This means that a mixture
of orthogonal states behaves as a classical probability distribution and
can be perfectly known by suitable measurements.

7.2 The Holevo bound

In general it is very difficult to compute the supremum over all possible
measurement basis, involved in the definition of the accessible information.
Holevo (following pioneering works of Gordon and levitin) gave a bound
which gives us an estimate that is independent of the measurement basis. In
general this bound is loose and is not achievable by a measurement basis.
The achievability holds for special mixtures, as briefly discussed in the next
paragraph, and plays an important role in channel coding theorems.

Theorem [Holevo bound]. Let X be a classical random variable {px =
Prob(X = x)} and {px, ρx} a mixture of mixed quantum states. Let Y
be the random variable describing outcomes of measurements on the state
ρ =

∑
x pxρx in the basis {Py} (these can be measurements of any observable

that has the spectral decomposition A =
∑

y ayPy). Then

I(X;Y ) ≤ χ({px, ρx}), so also Acc({px, ρx}) ≤ χ({px, ρx})

where
χ({px, ρx}) = S(ρ)−

∑
x

pxS(ρx)
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In the example ρF and ρT are pure so their individual entropies vanish,
and χ({px, ρx}) = S(ρ). The eigenvalues of ρ are ρ± = 1

2
±

√
2
4
. So the von

Neumann entropy is

S(ρ) = −(
1

2
+

√
2

4
) ln(

1

2
+

√
2

4
)− (

1

2
−

√
2

4
) ln(

1

2
−

√
2

4
) = 0.41 = 0.59 ln 2

We can conclude that there are no measurements that would retrieve more
than 0.59 bits of information from X.
Exercise: compute Acc({px, ρx}).

Proof of the Holevo Bound. Bob is given the mixed state ρQ =
∑

x pxρx
which we view as a state belonging to HQ. We introduce a larger Hilbert
space HX ⊗HQ ⊗HY and a state

ρXQY =
∑
x

px|x⟩⟨x| ⊗ ρx ⊗ |0⟩⟨0|

The interpretation of this state is as follows: |x⟩⟨x| are mutual orthogonal
states describing Alice’s preparation (or r.v X) and |0⟩⟨0| is a blank state
where Bob will record his measurement outcomes. Note that dimHX =
number of values of x, dimHQ is the dimension of the Hilbert space in which
Bob’s state lives (e.g 2 if this is a single Qbit) and dimHY = dimHQ since
HY records the measurement outcomes. For the measurement basis of Bob
we take {Py = |y⟩⟨y|}.

We introduce the unitary operation

UXQY = Id⊗ UQY

where
UQY |ϕ⟩Q ⊗ |a⟩Y =

∑
y

Py|ϕ⟩Q ⊗ |a⊕ y⟩Y

Here a⊕ y is computed modulo dimHY . Let us check that this is a unitary
operation. We have

⟨ψ| ⊗ ⟨b|U †
QYUQY |ϕ⟩ ⊗ |a⟩ =

∑
y,y′

⟨ψ|Py′ ⊗ ⟨b⊕ y′|Pyϕ⟩ ⊗ |a⊕ y⟩

=
∑
y,y′

⟨ψ|Py′Py|ϕ⟩⟨b⊕ y′|a⊕ y⟩

=
∑
y,y′

δy,y′⟨ψ|Py|ϕ⟩⟨b⊕ y|a⊕ y⟩

= ⟨ψ|ϕ⟩⟨b|a⟩
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Thus Id⊗ UQY preserves the inner product and is unitary.
Now we define

ρ′XQY = UXQY ρXQYU
†
XQY =

∑
x,y,y′

px|x⟩⟨x| ⊗ PyρxPy′ ⊗ |y⟩⟨y′|

The two density matrices ρXQY and ρ′XQY have the same eigenvalues (since
they are unitarily related) therefore their von Neumann entropies are the
same

S(ρXQY ) = S(ρ′XQY )

The two partial density matrices

ρQY = TrXρXQY =
∑
x

pxρx ⊗ |0⟩⟨0| = ρ⊗ |0⟩⟨0|

and
ρ′QY = TrXρ

′
XQY =

∑
x

pxPyρxPy ⊗ |y⟩⟨y′|

are also unitarily related because of the tensor product form of UXQY =
Id⊗ UQY . Thus we also have

S(ρQY ) = S(ρ′QY )

From the strong sub-additivity

S(ρ′XQY )− S(ρ′QY ) ≤ S(ρ′XY )− S(ρ′Y ),

thus we get
S(ρXQY )− S(ρQY ) ≤ S(ρ′XY )− S(ρ′Y ).

The rest of the proof is a computation of all the entropies appearing in
this last inequality. For the first one we have

S(ρXQY ) = S
(∑

x

px|x⟩⟨x| ⊗ ρx
)

To compute this entropy we use the spectral decomposition ρx =
∑

ax
λax |ax⟩⟨ax|.

Then ∑
x

px|x⟩⟨x| ⊗ ρx =
∑
x,ax

pxλax |x⟩⟨x| ⊗ |ax⟩⟨ax|

Since this is a convex combination of mutually orthogonal states we have
that its entropy is

−
∑
x,ax

pxλax ln pxλax = H(X)−
∑
x

px
∑
ax

λax lnλax (7.4)

= H(X) +
∑
x

pxS(ρx)
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Thus
S(ρXQY ) = H(X) +

∑
x

pxS(ρx)

For the second entropy since ρQY = ρ⊗ |0⟩⟨0| we simply have

S(ρQY ) = S(ρ).

For the third one, we first compute the reduced density matrix

ρ′XY = TrQρ
′
XQY =

∑
x,y,y′

px|x⟩⟨x| ⊗ |y⟩⟨y′|TrQPyρxPy′

By the cyclicity of the trace

TrQPyρxPy′ = TrQPy′Pyρx = δyy′TrQPyρx = δyy′py|x

Thus we find
ρ′XY =

∑
x,y

px,y|x⟩⟨x| ⊗ |y⟩⟨y|

The states |x⟩⟨x| ⊗ |y⟩⟨y| are mutually orthogonal. Thus this density ma-
trix is just another representation for the random variable (X, Y ). The von
Neumann entropy is

S(ρ′XY ) = H(X, Y )

Now it remains to compute the last entropy S(ρ′Y ). We have

ρ′Y = Trρ′XY =
∑
x,y

px,y|y⟩⟨y| =
∑
y

py|y⟩⟨y|

therefore
S(ρ′Y ) = H(Y )

Collecting all these entropies and replacing them in the strong sub-additivity
inequality we obtain

H(X) +
∑
x

pxS(ρx)− S(ρ) ≤ H(X,Y )−H(Y )

which is the same as

I(X;Y ) ≤ S(ρ)−
∑
x

pxS(ρx) = χ(X; ρ)

This ends the proof of Holevo’s bound.
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7.3 Remarks on the achievability of Holevo’s

bound

Given a measurement basis {Py} we have

I(X;Y ) =H(Y )−H(Y |X)

=−
∑
y

(TrPyρ) ln(TrPyρ) +
∑
x

px
∑
y

(TrPyρx) ln(TrPyρx)

The Holevo bound states that for any {Py} this expression is less than

S(ρ)−
∑
x

pxS(ρx)

In general, given a mixture {px, ρx} it is difficult to assess if there exists a
measurement basis {Py} such that the bound is achieved. A positive answer
can be given in special important cases.

For a mixture of pure states {px, |ϕx⟩⟨ϕx|} and a measurement basis Py =
|y⟩⟨y| we have

I(X;Y ) =−
∑
y

(∑
x

px|⟨y|ϕx⟩|2) ln(
∑
x

px|⟨y|ϕx⟩|2
)

+
∑
x

px
∑
y

|⟨y|ϕx⟩|2 ln |⟨y|ϕx⟩|2

If the states |ϕx⟩ are mutually orthonormal, and we choose a measurement
basis containing all these states, we find

I(X;Y ) = H(X)

But since S(ρ) ≤ H(X)+
∑

x pxS(ρx) (a general bound proved in chapter 6)
we always have

χ(px; ρx) ≤ H(X)

Therefore we see that (for mixtures of mutually orthonormal states) the
equality is achieved for mixtures of orthonormal states, by a measurement
basis containing these states. This result is an expression of the fact that
orthonormal states can be perfectly distinguished: we gain the maximum
possible amount of mutual information by doing the right measurements.

These arguments can be generalized to the case of a mixture such that
the density matrices ρx are mutually orthonormal in the sense that

Trρxρx′ = 0, x ̸= x′
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This means that for no zero eigenvalues the eigenprojectors of ρx and ρx′ are
mutually orthogonal. If we set ρx =

∑
j λjPj,x for the spectral decomposition,

we have (for non zero λj’s)

TrPj,xPj′,x′ = δj,j′δx,x′

This can be checked by replacing the spectral decompositions of the density
matrices in the trace and noting that all terms in the sum are non-negative.
We leave it as an exercise for the reader to check that if the measurement
basis {Py} contains {Pj,x} one gets

I(X;Y ) = S(ρ)−
∑
x

pxS(ρx)

Summarizing, when the density matrices are mutually orthogonal, the Holevo
bound can again be attained by an appropriate measurement basis.

A more sophisticated case were achievability can be proven is the follow-
ing. Take a finite ”alphabet” of density matrices ρx (for example |0⟩⟨0| and
1
4
|0⟩⟨0|+ 3

4
|1⟩⟨1|) and fix a classical distribution px. Take M tensor products

of n elements picked in the alphabet: {ρx1 ⊗ · · · ⊗ ρxn}. Now given {px, ρx},
as long as M is not too large it is possible to find M tensor products that
are asymptotically mutually orthogonal

Tr(ρx1 ⊗ · · · ⊗ ρxn)(ρx′
1
⊗ · · · ⊗ ρx′

n
) → 0, n→ ∞

The proof uses the probabilistic method, in the spirit of Shannon’s theory.
One picks the tensor product strings randomly according to the distribution
px1 ...pxn to first show that the tensor products are mutually orthogonal on
average. Then usual arguments show that there must exist one such choice.
The proof shows that one should have log2M

n
≤ χ({px, ρx}). Combining this

result with the arguments of the previous paragraph we see that in such
a situation there exists a measurement basis in H⊗n that asymptotically
achieves the Holevo bound as n→ +∞,

1

n

∣∣∣∣I(X1...Xn;Y1...Yn)−
(
S(ρ⊗n)−

∑
x1...xn

px1 ...pxnS(ρx1 ⊗ · · · ⊗ ρxn)

)∣∣∣∣ → 0

(7.5)


