Exercises November 11, 2011. Quantum information theory and computation

Problem 1. Mixtures

a) Show that the two mixtures $\left\{|0\rangle, \frac{1}{2} ;|1\rangle, \frac{1}{2}\right\}$ and $\left\{\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \frac{1}{2} ; \frac{1}{\sqrt{2}}(|0\rangle-\right.$ $\left.|1\rangle), \frac{1}{2}\right\}$ have the same density matrix.
b) Consider the mixture $\left\{|0\rangle, \frac{1}{2} ; \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \frac{1}{2}\right\}$. Give the spectral decomposition of the density matrix.

Problem 2. Reduced density matrix

a) Take the first GHZ state for three Qbits $\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$ in the Hilbert space $\mathcal{H}_{A} \otimes \mathcal{H}_{B} \otimes \mathcal{H}_{C}$. Compute the reduced density matrices $\rho_{A B}$ and ρ_{C}.
b) Take the Bell state $|\Phi\rangle \otimes \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$. Compute Alice's and Bob's reduced density matrices.
c) Check that the Schmidt decomposition theorem holds in each of the above cases.

Problem 3. Schmidt decomposition theorem

Consider the pure N Qbit state,

$$
|\Psi\rangle=\frac{1}{2^{N / 2}} \sum_{b_{1} \ldots b_{N} \in\{0,1\}^{N}}\left|b_{1} \ldots b_{N}\right\rangle
$$

a) Compute the density matrix of the first Qbit. Show that it has non degenerate eigenvalues 0 and 1 .
b) Compute the reduced density matrix of the set of bits (2..N). Show that this $2^{N-1} \times 2^{N-1}$ matrix has a non degenerate eigenvalue 1 and an eigenvalue 0 with degeneracy $2^{N-1}-1$.
c) Check explicitly that the Schmidt decomposition theorem holds.

Problem 4. Remarks about purification

Consider a truly mixed state: one that is not extremal in the convex set of density matrices. Is it possible to purify with a pure tensor product state ? Is the purification unique?

