ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 16 Midterm Exam

Information Theory and Coding Nov. 8, 2011

3 problems, 100 points3 hours1 sheets of notes allowed

Good Luck!

Please write your name on each sheet of your answers

PROBLEM 1. (36 points) Suppose C is a *non-singular* code for an alphabet \mathcal{U} . (Recall that non-singularity is the property that $C(u) \neq C(v)$ for any $u, v \in \mathcal{U}, u \neq v$.)

Let $\ell(u) := \text{length}(\mathcal{C}(u))$ denote the length of the codeword assigned to the letter u. Note that ℓ takes values in the non-negative integers $\{0, 1, 2, ...\}$.

(a) (8 pts) Suppose C_0 is a prefix-free code for the non-negative integers. Show that the code

$$\tilde{\mathcal{C}}(u) := \mathcal{C}_0(\ell(u)) \,\mathcal{C}(u)$$

obtained by concatenating the codeword $C_0(\ell(u))$ with C(u) is a uniquely decodable code for the alphabet \mathcal{U} . Is $\tilde{\mathcal{C}}$ prefix-free?

(b) (4 pts) Show that there is a prefix-free code for nonnegative integers where the integer n is assigned a binary string of length

$$\ell_0(n) := [2 \log_2(n+1) + 1].$$

[Hint: $\sum_{n=0}^{\infty} 1/(n+1)^2 < 2.$]

(c) (8 pts) Suppose $\mathcal{U} = \{1, 2, ..., K\}$ and the probabilities $p_1, ..., p_K$ of the letters satisfy $p_1 \geq p_2 \geq \cdots \geq p_K$. How should one choose the *non-singular* code \mathcal{C} to minimize the expected codeword length? Show that letter j is assigned a codeword of length

$$\ell(j) = \lfloor \log_2 j \rfloor.$$

(d) (4 pts) With p_1, \ldots, p_K as above show that

$$jp_j \leq 1$$
 for all $j = 1, \ldots, K$.

(e) (4 pts) For the *non-singular* code C with shortest expected length chosen in part (c), show that there is a uniquely decodeable code \tilde{C} with lengths

$$\ell(j) \le \ell(j) + \lceil 2 \log_2(1 + \log_2(1/p_j)) + 1 \rceil.$$

(f) (8 pts) Show that any non-singular code satisfies

$$H(U) \le E[\ell(U)] + 2\log_2(1 + H(U)) + 2$$

[Hint: \log_2 is a concave function, so that $\sum_j p_j \log_2(x_j) \le \log_2(\sum_j p_j x_j)$.]

PROBLEM 2. (28 points) Suppose U_1, U_2, \ldots, U_n are i.i.d. random variables taking values in the alphabet \mathcal{U} with common distribution p.

Suppose further, that S is a subset of \mathcal{U}^n with the property that

$$\Pr(U^n \in S) > 1 - \delta$$

where $0 < \delta < 1$.

(a) (4 pts) Let A denote the set of ϵ -typical sequences of length n with respect to the distribution p. Show that

$$\Pr(U^n \in S \cap A) > 1 - \delta - \epsilon$$

for large enough n.

(b) (8 pts) Show that

$$|S \cap A| > (1 - \delta - \epsilon)2^{nH(p)(1 - \epsilon)}$$

for large enough n.

(c) (8 pts) Suppose $\tilde{U}_1, \tilde{U}_2, \ldots, \tilde{U}_n$ are i.i.d. random variables taking values in the alphabet \mathcal{U} with common distribution \tilde{p} .

Show that

$$\Pr(\tilde{U}^n \in S) \ge (1 - \delta - \epsilon) 2^{-n(1+\epsilon)D(p\|\tilde{p})} 2^{-n2\epsilon H(p)}$$

(d) (8 pts) Suppose we are told that a sequence U_1, U_2, U_3, \ldots is either i.i.d. with distribution p or i.i.d. with distribution \tilde{p} . We are asked to design a device that decides between these two alternatives based on the observation u_1, \ldots, u_n .

Let α_n be the probability of the event "device decides \tilde{p} " when the true distribution is p. Let β_n be the probability of the event "device decides p" when the true distribution is \tilde{p} .

Show that for any $0 < \delta < 1$, if $\alpha_n \leq \delta$ then

$$\beta_n \stackrel{\cdot}{\ge} 2^{-nD(p\|\tilde{p})}$$

where " \geq " means "greater than while ignoring $n\epsilon$ terms in the exponents".

[Hint: Define S to be the set of sequences u^n for which the device decides p.]

PROBLEM 3. (36 points) Suppose U_1, U_2, \ldots is a stationary Markov process, and the process V_1, V_2, \ldots is obtained from the U process by setting

$$V_i = f(U_i)$$

where f is a function from \mathcal{U} to \mathcal{V} . Note that V is also a stationary process.

Let H_U denote the entropy rate of the process U_1, U_2, \ldots and H_V denote the entropy rate of the process V_1, V_2, \ldots

(a) (12 pts) Justify each of the following equalities and inequalities.

$$H(V_{n+m}|V_{n+m-1},\dots,V_1) \ge H(V_{n+m}|V_{n+m-1},\dots,V_{n+1},U_n,\dots,U_1)$$
(A1)

$$= H(V_{n+m}|V_{n+m-1},\dots,V_{n+1},U_n)$$
(A2)

$$= H(V_{m+1}|V_m, \dots, V_2, U_1)$$
(A3)

$$= H(V_{m+1}|V_m, \dots, V_1, U_1)$$
(A4)

(b) (4 pts) Show that

$$H_V \ge H(V_{m+1}|V_m,\ldots,V_1,U_1)$$

- [Hint: $H_V = \lim_{n \to \infty} H(V_{m+n} | V_{m+n-1}, \dots, V_1)$.]
- (c) (4 pts) Show that

$$H(V_{m+1}|V_m,\ldots,V_1) - H(V_{m+1}|V_m,\ldots,V_1,U_1) = I(U_1;V_{m+1}|V_1,\ldots,V_m)$$

(d) (8 pts) Justify

$$H(U_1) \ge I(U_1; V_1, V_2, V_3, \dots)$$
 (D1)

$$=\sum_{m=0}^{\infty} I(U_1; V_{m+1} | V_1, \dots, V_m)$$
(D2)

- (e) (4 pts) Show that $\lim_{m\to\infty} I(U_1; V_{m+1}|V_1, \dots, V_m) = 0.$
- (f) (4 pts) Show that the sequence $H(V_{m+1}|V_m,\ldots,V_1,U_1)$ approaches H_V from below.