ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 16
Information Theory and Coding
Midterm Exam
Nov. 8, 2011

3 problems, 100 points
3 hours
1 sheets of notes allowed

Good Luck!

Please write your name on each sheet of your answers

Problem 1. (36 points) Suppose \mathcal{C} is a non-singular code for an alphabet \mathcal{U}. (Recall that non-singularity is the property that $\mathcal{C}(u) \neq \mathcal{C}(v)$ for any $u, v \in \mathcal{U}, u \neq v$.)

Let $\ell(u):=$ length $(\mathcal{C}(u))$ denote the length of the codeword assigned to the letter u. Note that ℓ takes values in the non-negative integers $\{0,1,2, \ldots\}$.
(a) (8 pts) Suppose \mathcal{C}_{0} is a prefix-free code for the non-negative integers. Show that the code

$$
\tilde{\mathcal{C}}(u):=\mathcal{C}_{0}(\ell(u)) \mathcal{C}(u)
$$

obtained by concatenating the codeword $\mathcal{C}_{0}(\ell(u))$ with $\mathcal{C}(u)$ is a uniquely decodable code for the alphabet \mathcal{U}. Is $\tilde{\mathcal{C}}$ prefix-free?
(b) (4 pts) Show that there is a prefix-free code for nonnegative integers where the integer n is assigned a binary string of length

$$
\ell_{0}(n):=\left\lceil 2 \log _{2}(n+1)+1\right\rceil .
$$

[Hint: $\left.\sum_{n=0}^{\infty} 1 /(n+1)^{2}<2.\right]$
(c) (8 pts) Suppose $\mathcal{U}=\{1,2, \ldots, K\}$ and the probabilities p_{1}, \ldots, p_{K} of the letters satisfy $p_{1} \geq p_{2} \geq \cdots \geq p_{K}$. How should one choose the non-singular code \mathcal{C} to minimize the expected codeword length? Show that letter j is assigned a codeword of length

$$
\ell(j)=\left\lfloor\log _{2} j\right\rfloor .
$$

(d) (4 pts) With p_{1}, \ldots, p_{K} as above show that

$$
j p_{j} \leq 1 \quad \text { for all } j=1, \ldots, K
$$

(e) (4 pts) For the non-singular code \mathcal{C} with shortest expected length chosen in part (c), show that there is a uniquely decodeable code $\tilde{\mathcal{C}}$ with lengths

$$
\tilde{\ell}(j) \leq \ell(j)+\left\lceil 2 \log _{2}\left(1+\log _{2}\left(1 / p_{j}\right)\right)+1\right\rceil .
$$

(f) (8 pts) Show that any non-singular code satisfies

$$
H(U) \leq E[\ell(U)]+2 \log _{2}(1+H(U))+2 .
$$

[Hint: $\log _{2}$ is a concave function, so that $\sum_{j} p_{j} \log _{2}\left(x_{j}\right) \leq \log _{2}\left(\sum_{j} p_{j} x_{j}\right)$.]

Problem 2. (28 points) Suppose $U_{1}, U_{2}, \ldots, U_{n}$ are i.i.d. random variables taking values in the alphabet \mathcal{U} with common distribution p.

Suppose further, that S is a subset of \mathcal{U}^{n} with the property that

$$
\operatorname{Pr}\left(U^{n} \in S\right)>1-\delta
$$

where $0<\delta<1$.
(a) (4 pts) Let A denote the set of ϵ-typical sequences of length n with respect to the distribution p. Show that

$$
\operatorname{Pr}\left(U^{n} \in S \cap A\right)>1-\delta-\epsilon
$$

for large enough n.
(b) (8 pts) Show that

$$
|S \cap A|>(1-\delta-\epsilon) 2^{n H(p)(1-\epsilon)}
$$

for large enough n.
(c) (8 pts) Suppose $\tilde{U}_{1}, \tilde{U}_{2}, \ldots, \tilde{U}_{n}$ are i.i.d. random variables taking values in the alphabet \mathcal{U} with common distribution \tilde{p}.
Show that

$$
\operatorname{Pr}\left(\tilde{U}^{n} \in S\right) \geq(1-\delta-\epsilon) 2^{-n(1+\epsilon) D(p \| \tilde{p})} 2^{-n 2 \epsilon H(p)}
$$

(d) (8 pts) Suppose we are told that a sequence $U_{1}, U_{2}, U_{3}, \ldots$ is either i.i.d. with distribution p or i.i.d. with distribution \tilde{p}. We are asked to design a device that decides between these two alternatives based on the observation u_{1}, \ldots, u_{n}.
Let α_{n} be the probability of the event "device decides \tilde{p} " when the true distribution is p. Let β_{n} be the probability of the event "device decides p " when the true distribution is \tilde{p}.
Show that for any $0<\delta<1$, if $\alpha_{n} \leq \delta$ then

$$
\beta_{n} \geq 2^{-n D(p \| \tilde{p})}
$$

where " $\dot{\geq}$ " means "greater than while ignoring $n \epsilon$ terms in the exponents".
[Hint: Define S to be the set of sequences u^{n} for which the device decides p.]

Problem 3. (36 points) Suppose U_{1}, U_{2}, \ldots is a stationary Markov process, and the process V_{1}, V_{2}, \ldots is obtained from the U process by setting

$$
V_{i}=f\left(U_{i}\right)
$$

where f is a function from \mathcal{U} to \mathcal{V}. Note that V is also a stationary process.
Let H_{U} denote the entropy rate of the process U_{1}, U_{2}, \ldots and H_{V} denote the entropy rate of the process V_{1}, V_{2}, \ldots
(a) (12 pts) Justify each of the following equalities and inequalities.

$$
\begin{align*}
H\left(V_{n+m} \mid V_{n+m-1}, \ldots, V_{1}\right) & \geq H\left(V_{n+m} \mid V_{n+m-1}, \ldots, V_{n+1}, U_{n}, \ldots, U_{1}\right) \tag{A1}\\
& =H\left(V_{n+m} \mid V_{n+m-1}, \ldots, V_{n+1}, U_{n}\right) \tag{A2}\\
& =H\left(V_{m+1} \mid V_{m}, \ldots, V_{2}, U_{1}\right) \tag{A3}\\
& =H\left(V_{m+1} \mid V_{m}, \ldots, V_{1}, U_{1}\right) \tag{A4}
\end{align*}
$$

(b) (4 pts) Show that

$$
H_{V} \geq H\left(V_{m+1} \mid V_{m}, \ldots, V_{1}, U_{1}\right)
$$

[Hint: $H_{V}=\lim _{n \rightarrow \infty} H\left(V_{m+n} \mid V_{m+n-1}, \ldots, V_{1}\right)$.]
(c) (4 pts) Show that

$$
H\left(V_{m+1} \mid V_{m}, \ldots, V_{1}\right)-H\left(V_{m+1} \mid V_{m}, \ldots, V_{1}, U_{1}\right)=I\left(U_{1} ; V_{m+1} \mid V_{1}, \ldots, V_{m}\right)
$$

(d) (8 pts) Justify

$$
\begin{align*}
H\left(U_{1}\right) & \geq I\left(U_{1} ; V_{1}, V_{2}, V_{3}, \ldots\right) \tag{D1}\\
& =\sum_{m=0}^{\infty} I\left(U_{1} ; V_{m+1} \mid V_{1}, \ldots, V_{m}\right) \tag{D2}
\end{align*}
$$

(e) (4 pts) Show that $\lim _{m \rightarrow \infty} I\left(U_{1} ; V_{m+1} \mid V_{1}, \ldots, V_{m}\right)=0$.
(f) $(4 \mathrm{pts})$ Show that the sequence $H\left(V_{m+1} \mid V_{m}, \ldots, V_{1}, U_{1}\right)$ approaches H_{V} from below.

