ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 17
Midterm Solutions

Information Theory and Coding
Nov. 8, 2011

Problem 1.

(a) Since \mathcal{C}_{0} is a prefix-free code for the non-negative integers, the decoder, given a binary string, can 'climb the tree for \mathcal{C}_{0} ' until it reaches a leaf and discover $\ell(u)$. It can then read $\ell(u)$ bits from the binary string which form $\mathcal{C}(u)$, since \mathcal{C} is non-singular this uniquely identifies u. Thus the code $\tilde{\mathcal{C}}$ is uniquely decodable. Furthermore, since the decoder never needs to read any additional bits from the input while decoding u, we see that the $\tilde{\mathcal{C}}$ is instantaneous, and consequently prefix-free.
(b) Observe that

$$
\sum_{n=0}^{\infty} 2^{-\ell_{0}(n)} \leq \sum_{n=0}^{\infty} 2^{-2 \log _{2}(n+1)-1}=\sum_{n=0}^{\infty} \frac{1}{2(n+1)^{2}}<1
$$

Thus length function ℓ_{0} satisfies the Kraft inequality, hence a prefix-free code with these lengths exist.
(c) We would order the binary strings from the shortest to longest: $\phi, 0,1,00,01,10$, $11,000,001, \ldots$, and assign them to the letters in the order of decreasing probability so the most probable letter gets the shortest codeword. In this assignment, we have:

Letters	length of the assigned string
1	0
2,3	1
$4,5,6,7$	2
$8, \ldots, 15$	3
\ldots	\ldots
$2^{n}, \ldots, 2^{n+1}-1$	n
\ldots	\ldots

so we see that letter j is assigned a codeword of length $\left\lfloor\log _{2} j\right\rfloor$.
(d) We have $1=\sum_{i=1}^{K} p_{i} \geq \sum_{i=1}^{j} p_{i} \geq j p_{j}$, the last inequality because the sum has j terms, the smallest of which is p_{j}.
(e) Using part (b) we know that there is a code \mathcal{C}_{0} for the non-negative integers with

$$
\ell_{0}(n)=\left\lceil 2 \log _{2}(n+1)+1\right\rceil \leq 2 \log _{2}(n+1)+2
$$

With this code for the non-negative integers, we see that in the code $\tilde{\mathcal{C}}$ as in part (a) the letter j is assigned a codeword of length

$$
\begin{aligned}
\tilde{\ell}(j) & =\ell_{0}\left(\left\lfloor\log _{2} j\right\rfloor\right)+\ell(j) \\
& \leq 2 \log _{2}\left(\left\lfloor\log _{2} j\right\rfloor+1\right)+2+\ell(j) \\
& \leq 2 \log _{2}\left(\log _{2} j+1\right)+2+\ell(j) \\
& \leq 2 \log _{2}\left(\log _{2}\left(1 / p_{j}\right)+1\right)+2+\ell(j) \quad \text { by part }(\mathrm{d}) .
\end{aligned}
$$

(f) It suffices to show the inequality for the expected length of the non-singular code \mathcal{C} in part (c). Since $\tilde{\mathcal{C}}$ is uniquely decodable, $H(U) \leq E[\tilde{\ell}(U)]$. Thus,

$$
\begin{aligned}
H(U) & \leq E[\tilde{\ell}(U)] \\
& \leq \sum_{j} p_{j}\left(2 \log _{2}\left(\log _{2}\left(1 / p_{j}\right)+1\right)+2+\ell(j)\right) \\
& =2 \sum_{j} p_{j}\left(\log _{2}\left(\log _{2}\left(1 / p_{j}\right)+1\right)\right)+2+E[\ell(U)] \\
& \leq 2 \log _{2}\left(\sum_{j} p_{j} \log _{2}\left(1 / p_{j}\right)+1\right)+2+E[\ell(U)] \\
& =2 \log _{2}(H(U)+1)+2+E[\ell(U)] .
\end{aligned}
$$

Problem 2.

(a) Since for large enough n we have

$$
\operatorname{Pr}\left(U^{n} \in A\right)>1-\epsilon,
$$

we see that $1-\operatorname{Pr}\left(U^{n} \in A \cap S\right)=\operatorname{Pr}\left(U^{n} \in A^{c} \cup S^{c}\right)<\epsilon+\delta$.
(b) Since for $u^{n} \in A$ we have $\operatorname{Pr}\left(U^{n}=u^{n}\right) \leq 2^{-n H(p)(1-\epsilon)}$, we have

$$
\begin{aligned}
1-\delta-\epsilon<\operatorname{Pr}\left(U^{n} \in S \cap A\right)=\sum_{u^{n} \in S \cap A} & \operatorname{Pr}\left(U^{n}=u^{n}\right) \\
& \leq \sum_{u^{n} \in S \cap A} 2^{-n H(p)(1-\epsilon)}=|S \cap A| 2^{-n H(p)(1-\epsilon)} .
\end{aligned}
$$

(c) For $u^{n} \in A$ we have $\operatorname{Pr}\left(\tilde{U}^{n}=u^{n}\right) \geq 2^{-n[D(p \| \tilde{p})+H(p)](1+\epsilon)}$. Thus

$$
\begin{aligned}
\operatorname{Pr}\left(\tilde{U}^{n} \in S\right) & \geq \operatorname{Pr}\left(\tilde{U}^{n} \in S \cap A\right) \\
& =\sum_{u^{n} \in S \cap A} \operatorname{Pr}\left(\tilde{U}^{n} \in u^{n}\right) \\
& \geq \sum_{u^{n} \in S \cap A} 2^{-n[D(p \| \tilde{p})+H(p)](1+\epsilon)} \\
& \geq|S \cap A| 2^{-n[D(p \| \tilde{p})+H(p)](1+\epsilon)} \\
& \geq(1-\delta-\epsilon) 2^{-n(1+\epsilon) D(p \| \tilde{p})} 2^{-n 2 \epsilon H(p)} .
\end{aligned}
$$

(d) Letting

$$
S=\left\{u^{n}: \text { the device decides } p\right\}
$$

we see that α_{n} is exactly the probability that an i.i.d. sequence distributed with p falls outside S. When $\alpha_{n} \leq \delta$, we see that S satisfies the conditions of the problem statement. Furthermore β_{n} is exactly the probability that an i.i.d. sequence distributed with \tilde{p} falls in S, so, by part (c)

$$
\beta_{n} \geq 2^{-n D(p \| \tilde{p})}
$$

Problem 3. Note that while U_{1}, U_{2}, \ldots is a Markov chain V_{1}, V_{2}, \ldots may not be. Consequently it is not an easy task to compute the entropy rate of the V process.
(a)
(A1) Conditioning further on U_{1}, \ldots, U_{n} reduces entropy, and when U_{1}, \ldots, U_{n} are given, V_{1}, \ldots, V_{n} are determined and can be dropped without changing entropy.
(A2) Given U_{n}, the future U_{n+1}, U_{n+2}, \ldots are independent of the past U_{1}, \ldots, U_{n-1}. Since $V_{n+1}, \ldots, V_{n+2}, \ldots$ are functions of U_{n+1}, U_{n+2}, \ldots, they are also independent of U_{1}, \ldots, U_{n-1} once U_{n} is given. Thus, U_{1}, \ldots, U_{n-1} can be dropped from the conditioning without changing entropy.
(A3) By stationarity, the time index can be shifted by $n-1$.
(A4) V_{1} is determined by U_{1} so it can be added without changing entropy.
(b) Taking the limit as $n \rightarrow \infty$ of the both sides of the inequality shown in (a)

$$
H\left(V_{m+n} \mid V_{m+n-1}, \ldots, V_{1}\right) \geq H\left(V_{m+1} \mid V_{m}, \ldots, V_{1}, U_{1}\right)
$$

and noting that the right hand side has no n, we see that

$$
H_{V} \geq H\left(V_{m+1} \mid V_{m}, \ldots, V_{1}, U_{1}\right)
$$

(c) This is by definition of conditional mutual information.
(d) (D1) because $H\left(U_{1} \mid V_{1}, V_{2}, \ldots\right)$ is non-negative.
(D2) chain rule for mutual information.
(e) Defining $r_{m}=I\left(U_{1} ; V_{m+1} \mid V_{1}, \ldots, V_{m}\right)$, we see from (d) that r_{m} is a sequence with $\sum_{m} r_{m}<\infty$. Thus r_{m} converges to zero.
(f) By part (c) and (e) we see that the sequence $a_{m}=H\left(V_{m+1} \mid V_{m}, \ldots, V_{1}, U_{1}\right)$ has the same limit as the sequence $b_{m}=H\left(V_{m+1} \mid V_{m}, \ldots, V_{1}\right)$. But b_{m} converges to H_{V}. Thus a_{m} also coverges to H_{V} and by (b) it does so from below.
Note that we know that b_{m} coverges to H_{V} from above, so the conclusion that a_{m} converges to H_{V} from below gives us a computational method to approximate H_{V} to any desired accuracy: compute $a_{1}, b_{1}, a_{2}, b_{2}, \ldots$, until $b_{m}-a_{m}$ is smaller than the desired accuracy of approximation.

