ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 17	Information Theory and Coding
Midterm Solutions	Nov. 8, 2011

PROBLEM 1.

(a) Since C_0 is a prefix-free code for the non-negative integers, the decoder, given a binary string, can 'climb the tree for C_0 ' until it reaches a leaf and discover $\ell(u)$. It can then read $\ell(u)$ bits from the binary string which form C(u), since C is non-singular this uniquely identifies u. Thus the code \tilde{C} is uniquely decodable. Furthermore, since the decoder never needs to read any additional bits from the input while decoding u, we see that the \tilde{C} is *instantaneous*, and consequently prefix-free.

(b) Observe that

$$\sum_{n=0}^{\infty} 2^{-\ell_0(n)} \le \sum_{n=0}^{\infty} 2^{-2\log_2(n+1)-1} = \sum_{n=0}^{\infty} \frac{1}{2(n+1)^2} < 1.$$

Thus length function ℓ_0 satisfies the Kraft inequality, hence a prefix-free code with these lengths exist.

(c) We would order the binary strings from the shortest to longest: ϕ , 0, 1, 00, 01, 10, 11, 000, 001, ..., and assign them to the letters in the order of decreasing probability so the most probable letter gets the shortest codeword. In this assignment, we have:

Letters	length of the assigned string
1	0
2, 3	1
4, 5, 6, 7	2
$8, \ldots, 15$	3
$2^n, \ldots, 2^{n+1} - 1$	n

so we see that letter j is assigned a codeword of length $\lfloor \log_2 j \rfloor$.

- (d) We have $1 = \sum_{i=1}^{K} p_i \ge \sum_{i=1}^{j} p_i \ge jp_j$, the last inequality because the sum has j terms, the smallest of which is p_j .
- (e) Using part (b) we know that there is a code C_0 for the non-negative integers with

$$\ell_0(n) = \lceil 2\log_2(n+1) + 1 \rceil \le 2\log_2(n+1) + 2.$$

With this code for the non-negative integers, we see that in the code \tilde{C} as in part (a) the letter j is assigned a codeword of length

$$\begin{split} \tilde{\ell}(j) &= \ell_0(\lfloor \log_2 j \rfloor) + \ell(j) \\ &\leq 2 \log_2(\lfloor \log_2 j \rfloor + 1) + 2 + \ell(j) \\ &\leq 2 \log_2(\log_2 j + 1) + 2 + \ell(j) \\ &\leq 2 \log_2(\log_2(1/p_j) + 1) + 2 + \ell(j) \end{split}$$
 by part (d).

(f) It suffices to show the inequality for the expected length of the non-singular code C in part (c). Since \tilde{C} is uniquely decodable, $H(U) \leq E[\tilde{\ell}(U)]$. Thus,

$$H(U) \leq E[\tilde{\ell}(U)]$$

$$\leq \sum_{j} p_{j} (2 \log_{2}(\log_{2}(1/p_{j}) + 1) + 2 + \ell(j))$$

$$= 2 \sum_{j} p_{j} (\log_{2}(\log_{2}(1/p_{j}) + 1)) + 2 + E[\ell(U)]$$

$$\leq 2 \log_{2} (\sum_{j} p_{j} \log_{2}(1/p_{j}) + 1) + 2 + E[\ell(U)]$$

$$= 2 \log_{2}(H(U) + 1) + 2 + E[\ell(U)].$$

Problem 2.

(a) Since for large enough n we have

$$\Pr(U^n \in A) > 1 - \epsilon,$$

we see that $1 - \Pr(U^n \in A \cap S) = \Pr(U^n \in A^c \cup S^c) < \epsilon + \delta$.

(b) Since for $u^n \in A$ we have $\Pr(U^n = u^n) \leq 2^{-nH(p)(1-\epsilon)}$, we have

$$1 - \delta - \epsilon < \Pr(U^n \in S \cap A) = \sum_{u^n \in S \cap A} \Pr(U^n = u^n)$$
$$\leq \sum_{u^n \in S \cap A} 2^{-nH(p)(1-\epsilon)} = |S \cap A| 2^{-nH(p)(1-\epsilon)}.$$

(c) For $u^n \in A$ we have $\Pr(\tilde{U}^n = u^n) \ge 2^{-n[D(p\|\tilde{p}) + H(p)](1+\epsilon)}$. Thus

$$\Pr(\tilde{U}^n \in S) \ge \Pr(\tilde{U}^n \in S \cap A)$$

= $\sum_{u^n \in S \cap A} \Pr(\tilde{U}^n \in u^n)$
 $\ge \sum_{u^n \in S \cap A} 2^{-n[D(p \| \tilde{p}) + H(p)](1+\epsilon)}$
 $\ge |S \cap A| 2^{-n[D(p \| \tilde{p}) + H(p)](1+\epsilon)}$
 $\ge (1 - \delta - \epsilon) 2^{-n(1+\epsilon)D(p \| \tilde{p})} 2^{-n2\epsilon H(p)}.$

(d) Letting

 $S = \{u^n : \text{the device decides } p\},\$

we see that α_n is exactly the probability that an i.i.d. sequence distributed with p falls outside S. When $\alpha_n \leq \delta$, we see that S satisfies the conditions of the problem statement. Furthermore β_n is exactly the probability that an i.i.d. sequence distributed with \tilde{p} falls in S, so, by part (c)

$$\beta_n \geq 2^{-nD(p\|\tilde{p})}.$$

PROBLEM 3. Note that while U_1, U_2, \ldots is a Markov chain V_1, V_2, \ldots may not be. Consequently it is not an easy task to compute the entropy rate of the V process.

(a)

- (A1) Conditioning further on U_1, \ldots, U_n reduces entropy, and when U_1, \ldots, U_n are given, V_1, \ldots, V_n are determined and can be dropped without changing entropy.
- (A2) Given U_n , the future U_{n+1}, U_{n+2}, \ldots are independent of the past U_1, \ldots, U_{n-1} . Since $V_{n+1}, \ldots, V_{n+2}, \ldots$ are functions of U_{n+1}, U_{n+2}, \ldots , they are also independent of U_1, \ldots, U_{n-1} once U_n is given. Thus, U_1, \ldots, U_{n-1} can be dropped from the conditioning without changing entropy.
- (A3) By stationarity, the time index can be shifted by n-1.
- (A4) V_1 is determined by U_1 so it can be added without changing entropy.
- (b) Taking the limit as $n \to \infty$ of the both sides of the inequality shown in (a)

 $H(V_{m+n}|V_{m+n-1},\ldots,V_1) \ge H(V_{m+1}|V_m,\ldots,V_1,U_1)$

and noting that the right hand side has no n, we see that

$$H_V \ge H(V_{m+1}|V_m, \dots, V_1, U_1).$$

- (c) This is by definition of conditional mutual information.
- (d) (D1) because $H(U_1|V_1, V_2, ...)$ is non-negative.

(D2) chain rule for mutual information.

- (e) Defining $r_m = I(U_1; V_{m+1}|V_1, \ldots, V_m)$, we see from (d) that r_m is a sequence with $\sum_m r_m < \infty$. Thus r_m converges to zero.
- (f) By part (c) and (e) we see that the sequence $a_m = H(V_{m+1}|V_m, \ldots, V_1, U_1)$ has the same limit as the sequence $b_m = H(V_{m+1}|V_m, \ldots, V_1)$. But b_m converges to H_V . Thus a_m also coverges to H_V and by (b) it does so from below.

Note that we know that b_m coverges to H_V from above, so the conclusion that a_m converges to H_V from below gives us a computational method to approximate H_V to any desired accuracy: compute $a_1, b_1, a_2, b_2, \ldots$, until $b_m - a_m$ is smaller than the desired accuracy of approximation.