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Problem 1. (Average Energy of PAM)

1. The pdf of S can be written as fS(s) =
�m

2
i=−m

2 +1 δ(s − (2i − 1)a) while the pdf of

U is fU(u) =
1
2a1[−a,a](u). As S and U are independent the pdf of V = S + U is the

convolution of fS and fU . From a sketch of fS and fU we immediately see that fV is
uniform in [−ma,ma].

2. U and V have symmetric distribution around zero so the mean value of both is zero.
E{V 2} =

�
ma

−ma
v2fV (v)dv =
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ma
v2 dv

2ma
= m

2
a
2

3 . Hence, var(V ) = m
2
a
2

3 . By symmetry,

var(U) = a
2

3 .

3. U and S are independent random variables and so var(V ) = var(S + U) = var(S) +
var(U). Hence, var(S) = (m2−1)a2

3 .

4. Actually we have derived the expression for the average energy of PAM given in the
Example 4.4.57 where the distance between the adjacent points is d = 2a.

Problem 2. (Pulse Amplitude Modulated Signals)

1. From the previous problem we know that the mean energy of the PAM constellation
with distance d = 2a is equal to (m2−1)a2

3 . Replacing a by d

2 we have Es = (m2−1)d2

12 .

2. The received signal is
y(t) = si(t) +N(t)

where N(t) is a white Gaussian noise process.

The ML detector passes the received signal into a filter with impulse response φ(−t).
Let y be the output at time t = 0. The decision is i if i is the index that minimizes
||Y − si||2.



3. The conditional probabilities of error are
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4. Let m = 2k, then Es = Es(k) = d
2

12(4
k − 1) and

Es(k + 1)

Es(k)
� 4

Problem 3. (Root-Mean Square Bandwidth)

1. If we define inner product of two function, which may be complex valued, by < f, g >��∞
−∞ f �(t)g(t)dt then we have | < f, g > |2 ≤< f, f >< g, g > by Schwartz in-
equality. It can also be checked that < f, g >=< g, f >�. Using this definition��∞

−∞[g∗1(t)g2(t) + g1(t)g∗2(t)]dt
�
=< g1, g2 > + < g2, g1 >=< g1, g2 > + < g1, g2 >�=

2�(< g1, g2 >). Hence, |
��∞

−∞[g∗1(t)g2(t) + g1(t)g∗2(t)]dt
�
|2 = 4|�(< g1, g2 >)|2 ≤ 4 <

g1, g1 >< g2, g2 > and writing the expression for < g1, g1 > and < g2, g2 > we have

|
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�
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�∞
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�∞
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2. Expanding the expression and using the fact that t is a real number we have

�� ∞

−∞
t
d

dt
[g(t)g∗(t)] dt
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Using the result in the previous part and setting g1(t) = tg(t) and g2(t) = g
�
(t) we
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3. Integrating by part we have
� ∞

−∞
t
d

dt
[g(t)g∗(t)] dt = t|g(t)|2|∞−∞ −

� ∞

−∞
|g(t)|2dt

First component is zero by the problem statement and so remains the second compo-
nent. Hence, replacing in the result of previous part we have
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4. From Parseval’s relation we have� ∞

−∞
|g(t)|2dt =

� ∞

−∞
|G(f)|2df

Further more we know that the Fourier transform of dg(t)
dt

is j2πfG(f) and applying
the Praseval’s relation to dg(t)

dt
we have

� ∞

−∞
|dg(t)

dt
|2dt =

� ∞

−∞
4π2f 2|G(f)|2df

replacing in the result of the previous part we have
� ∞

−∞
|g(t)|2dt
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|G(f)|2df ≤ (4π)2
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5. Simply, dividing the right part of the equality in the previous part by the left part and
using the definition of Trms and Wrms we obtain TrmsWrms ≥ 1

4π .

6. For the Gaussian pulse, it is easily checked that the shape of the pulse squared is similar
to the Gaussian distribution with σ2 = 1

4π and which also needs some normalization
factor. Putting altogether we have

T 2
rms

=
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−∞ t2| exp(−πt2)|2dt
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Using the fact that

exp(−πt2)
F←→ exp(−πf 2).

we have
W 2

rms
=

1

4π
.

Thus for the Gaussian pulse, we have

TrmsWrms =
1

4π
.
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Problem 4. (Orthogonal Signal Sets)

1. To find the minimum-energy signal set, we first compute the centroid of the signal set:

a =
m−1�

j=0

PH(j)sj(t) =
1

m

m−1�

j=0

�
Esφj(t).

so

s∗
j
(t) = sj(t)− a

=
�
Esφj(t)−

1

m

m−1�

i=0

�
Esφi(t)

=
�
Es
m− 1

m
φj(t)−

1

m

�

i �=j

�
Esφi(t).

2. Notice that
�

m−1
j=0 s�

j
(t) = 0 by the definition of s�

j
(t), j = 0, 1, · · · ,m−1. Hence, the

m signals {s�0(t), · · · , s�m−1(t)} are linearly dependent. This means that their space has
dimensionality less thanm. We show that any collection ofm−1 or less is linearly inde-
pendent. That would prove that the dimensionality of the space {s�0(t), · · · , s�m−1(t)}
is m − 1. Without loss of generality we consider s�0(t), · · · , s�m−2(t). Assume that�

m−2
j=0 αjs�j(t) = 0. Using the definition of s�

j
(t) j = 0, 1, · · · ,m − 1 we may write�

m−2
j=0 (αj−β)sj(t)−βsm−1(t) = 0 where β = 1

m

�
m−1
j=0 αj. But s0(t), s1(t), · · · , sm−1(t)

is an orthogonal set and this implies β = 0 and αj = β = 0 j = 0, 1, · · · ,m−2. That
means that αj = 0 j = 0, 1, · · · ,m− 2. Hence, s�

j
(t) j = 0, 1, · · · ,m− 2 are linearly

independent. We have proved that the new set spans a space of dimension m− 1.

3. It is easy to show that n-tuple corresponding to s�
j
is

√
Esm−1

m
at position j and

√
Es
m

at all other positions. Clearly ||s�
j
||2 = (m− 1) Es

m2 +
Es
m2 (m− 1)2 = Es(1− 1

m
). This is

independent of j so the average energy is also Es(1− 1
m
).

Problem 5. (m-ary Frequency shift Keying)

1. Orthogonality requires
�

T

0 cos(2π(fc + i∆f)t) cos(2π(fc + j∆f)t)dt = 0 for every i �=
j. Using the trigonometric identity cos(α) cos(β) = 1

2 cos(α + β) + 1
2 cos(α − β), an

equivalent condition is 1
2

�
T

0 [cos(2π(i − j)∆ft) + cos(2π(2fc + (i + j)∆f)t)]dt = 0.
Integrating we obtain sin(2π(i−j)∆fT )

2π(i−j)∆f
+ sin(2π(2fc+(i+j)∆f)T )

2π(2fc+(i+j)∆f) = 0. As fcT is assumed to be

an integer, the result can be simplified to sin(2π(i−j)∆fT )
2π(i−j)∆f

+ sin(2π(i+j)∆fT )
2π(2fc+(i+j)∆f) = 0. As i and

j are integer this result is zeros for i �= j if and only if 2π∆fT is an integer multiple of
π. Hence, we obtain the minimum value of ∆f if 2π∆fT = π which gives ∆f = 1

2T .
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2. Proceeding similarly we will have orthogonality if and only if sin(2π(i−j)∆fT+θi−θj)−sin(θi−θj)
2π(i−j)∆f

+
sin(2π(i+j)∆fT+θi+θj)−sin(θi+θj)

2π(2fc+(i+j)∆f) = 0. In this case we see that both parts become zero if and

only if 2π∆fT is an even multiple of π which means that the smallest ∆f is ∆f = 1
T

which is twice the minimum frequency separation needed in the previous part. Hence,
the cost of phase uncertainty is a bandwidth expansion by a factor of 2.

3. The condition we obtained for the orthogonality in the first part consist of two terms
as follows

�
T

0 [cos(2π(i− j)∆ft)+cos(2π(2fc+(i+ j)∆f)t)]dt = 0. We saw that if fcT
is exactly an integer number then with have orthogonality with ∆f = 1

2T . Now assume
that fc >> M∆f in this case the integral value will be sin(2π(2fc+(i+j)∆f)T

2π(2fc+(i+j)∆f
which its

absolute value is always less that 1
2π(2fc+(i+j)∆f

which approaches zero as fc becomes

bigger and bigger. So if we choose ∆f = 1
2T and take fc >> m∆f then we will have

approximately orthogonality. In a similar way when we have a random phase shift then
we can choose ∆f = 1

T
and take fc >> m∆f to have orthogonality.

4. Integrating si(t)2 over [0, T ] we obtain A2 × 2
T
× 1

2 × T = A2 which holds for every i.
Hence, the mean energy of the constellation is A2 but this energy is transmitted during
[0, T ] so the mean power will be A

2

T
which is independent of k.

5. We have M signals separated by ∆f . The approximate bandwidth is m∆f . This
means bandwidth 2k

2T in the former case, without random phase shift, and bandwidth
2k

T
in the latter case in which we have a random phase shift.

6. Practical systems have a constant B and a T which grows linearly with k. Even if we
let T grow linearly with k, in the system considered here, B grows exponentially with
k. This is not practical.
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