ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
 School of Computer and Communication Sciences

Solution of Homework 8

Problem 1. (Average Energy of PAM)

1. The pdf of S can be written as $f_{S}(s)=\sum_{i=-\frac{m}{2}+1}^{\frac{m}{2}} \delta(s-(2 i-1) a)$ while the pdf of U is $f_{U}(u)=\frac{1}{2 a} \mathbf{1}_{[-a, a]}(u)$. As S and U are independent the pdf of $V=S+U$ is the convolution of f_{S} and f_{U}. From a sketch of f_{S} and f_{U} we immediately see that f_{V} is uniform in $[-m a, m a]$.
2. U and V have symmetric distribution around zero so the mean value of both is zero. $E\left\{V^{2}\right\}=\int_{-m a}^{m a} v^{2} f_{V}(v) d v=\int_{m a}^{m a} v^{2} \frac{d v}{2 m a}=\frac{m^{2} a^{2}}{3}$. Hence, $\operatorname{var}(V)=\frac{m^{2} a^{2}}{3}$. By symmetry, $\operatorname{var}(U)=\frac{a^{2}}{3}$.
3. U and S are independent random variables and so $\operatorname{var}(V)=\operatorname{var}(S+U)=\operatorname{var}(S)+$ $\operatorname{var}(U)$. Hence, $\operatorname{var}(S)=\frac{\left(m^{2}-1\right) a^{2}}{3}$.
4. Actually we have derived the expression for the average energy of PAM given in the Example 4.4.57 where the distance between the adjacent points is $d=2 a$.

Problem 2. (Pulse Amplitude Modulated Signals)

1. From the previous problem we know that the mean energy of the PAM constellation with distance $d=2 a$ is equal to $\frac{\left(m^{2}-1\right) a^{2}}{3}$. Replacing a by $\frac{d}{2}$ we have $\mathcal{E}_{s}=\frac{\left(m^{2}-1\right) d^{2}}{12}$.
2. The received signal is

$$
y(t)=s_{i}(t)+N(t)
$$

where $N(t)$ is a white Gaussian noise process.
The ML detector passes the received signal into a filter with impulse response $\phi(-t)$. Let y be the output at time $t=0$. The decision is i if i is the index that minimizes $\left\|Y-s_{i}\right\|^{2}$.
3. The conditional probabilities of error are

$$
\begin{aligned}
\operatorname{Pr}\left(e \left\lvert\, s_{i}=\frac{+(m-1) d}{2}\right.\right) & =\operatorname{Pr}\left(e \left\lvert\, s_{i}=\frac{-(m-1) d}{2}\right.\right) \\
& =\operatorname{Pr}\left(Z>\frac{d}{2}\right)=Q\left(\frac{d}{\sqrt{2 N_{0}}}\right) \\
\operatorname{Pr}\left(e \left\lvert\, s_{i} \neq \frac{ \pm(m-1) d}{2}\right.\right) & =\operatorname{Pr}\left(\left(Z<\frac{-d}{2}\right) \cup\left(Z>\frac{d}{2}\right)\right)=2 Q\left(\frac{d}{\sqrt{2 N_{0}}}\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
\operatorname{Pr}(e) & =\frac{2}{m} \operatorname{Pr}\left(e \left\lvert\, s_{i}=\frac{+(m-1) d}{2}\right.\right)+\frac{m-2}{m} \operatorname{Pr}\left(e \left\lvert\, s_{i} \neq \frac{ \pm(m-1) d}{2}\right.\right) \\
& =2 \frac{m-1}{m} Q\left(\frac{d}{\sqrt{2 N_{0}}}\right) .
\end{aligned}
$$

4. Let $m=2^{k}$, then $\mathcal{E}_{s}=\mathcal{E}_{s}(k)=\frac{d^{2}}{12}\left(4^{k}-1\right)$ and

$$
\frac{E_{s}(k+1)}{E_{s}(k)} \simeq 4
$$

Problem 3. (Root-Mean Square Bandwidth)

1. If we define inner product of two function, which may be complex valued, by $<f, g>\triangleq$ $\int_{-\infty}^{\infty} f^{\star}(t) g(t) d t$ then we have $|<f, g>|^{2} \leq<f, f><g, g>$ by Schwartz inequality. It can also be checked that $<f, g>=<g, f>^{\star}$. Using this definition $\left\{\int_{-\infty}^{\infty}\left[g_{1}^{*}(t) g_{2}(t)+g_{1}(t) g_{2}^{*}(t)\right] d t\right\}=<g_{1}, g_{2}>+<g_{2}, g_{1}>=<g_{1}, g_{2}>+<g_{1}, g_{2}>^{\star}=$ $2 \Re\left(<g_{1}, g_{2}>\right)$. Hence, $\left|\left\{\int_{-\infty}^{\infty}\left[g_{1}^{*}(t) g_{2}(t)+g_{1}(t) g_{2}^{*}(t)\right] d t\right\}\right|^{2}=4\left|\Re\left(<g_{1}, g_{2}>\right)\right|^{2} \leq 4<$ $g_{1}, g_{1}><g_{2}, g_{2}>$ and writing the expression for $<g_{1}, g_{1}>$ and $<g_{2}, g_{2}>$ we have $\left|\left\{\int_{-\infty}^{\infty}\left[g_{1}^{*}(t) g_{2}(t)+g_{1}(t) g_{2}^{*}(t)\right] d t\right\}\right|^{2} \leq 4 \int_{-\infty}^{\infty}\left|g_{1}(t)\right|^{2} d t \int_{-\infty}^{\infty}\left|g_{2}(t)\right|^{2} d t$.
2. Expanding the expression and using the fact that t is a real number we have

$$
\left[\int_{-\infty}^{\infty} t \frac{d}{d t}\left[g(t) g^{*}(t)\right] d t\right]^{2}=\left[\int_{-\infty}^{\infty}\left[(t g(t))\left(g^{\prime}(t)\right)^{\star}+(t g(t))^{\star} g^{\prime}(t)\right] d t\right]^{2}
$$

Using the result in the previous part and setting $g_{1}(t)=t g(t)$ and $g_{2}(t)=g^{\prime}(t)$ we have

$$
\left[\int_{-\infty}^{\infty} t \frac{d}{d t}\left[g(t) g^{*}(t)\right] d t\right]^{2} \leq 4 \int_{-\infty}^{\infty} t^{2}|g(t)|^{2} d t \int_{-\infty}^{\infty}\left|\frac{d g(t)}{d t}\right|^{2} d t
$$

3. Integrating by part we have

$$
\int_{-\infty}^{\infty} t \frac{d}{d t}\left[g(t) g^{*}(t)\right] d t=\left.t|g(t)|^{2}\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty}|g(t)|^{2} d t
$$

First component is zero by the problem statement and so remains the second component. Hence, replacing in the result of previous part we have

$$
\left[\int_{-\infty}^{\infty}|g(t)|^{2} d t\right]^{2} \leq 4 \int_{-\infty}^{\infty} t^{2}|g(t)|^{2} d t \int_{-\infty}^{\infty}\left|\frac{d g(t)}{d t}\right|^{2} d t
$$

4. From Parseval's relation we have

$$
\int_{-\infty}^{\infty}|g(t)|^{2} d t=\int_{-\infty}^{\infty}|G(f)|^{2} d f
$$

Further more we know that the Fourier transform of $\frac{d g(t)}{d t}$ is $j 2 \pi f G(f)$ and applying the Praseval's relation to $\frac{d g(t)}{d t}$ we have

$$
\int_{-\infty}^{\infty}\left|\frac{d g(t)}{d t}\right|^{2} d t=\int_{-\infty}^{\infty} 4 \pi^{2} f^{2}|G(f)|^{2} d f
$$

replacing in the result of the previous part we have

$$
\int_{-\infty}^{\infty}|g(t)|^{2} d t \int_{-\infty}^{\infty}|G(f)|^{2} d f \leq(4 \pi)^{2} \int_{-\infty}^{\infty} t^{2}|g(t)|^{2} d t \int_{-\infty}^{\infty} f^{2}|G(f)|^{2} d f
$$

5. Simply, dividing the right part of the equality in the previous part by the left part and using the definition of $T_{r m s}$ and $W_{r m s}$ we obtain $T_{r m s} W_{r m s} \geq \frac{1}{4 \pi}$.
6. For the Gaussian pulse, it is easily checked that the shape of the pulse squared is similar to the Gaussian distribution with $\sigma^{2}=\frac{1}{4 \pi}$ and which also needs some normalization factor. Putting altogether we have

$$
\begin{aligned}
T_{r m s}^{2} & =\left[\frac{\int_{-\infty}^{\infty} t^{2}\left|\exp \left(-\pi t^{2}\right)\right|^{2} d t}{\int_{-\infty}^{\infty}\left|\exp \left(-\pi t^{2}\right)\right|^{2} d t}\right] \\
& =\left[\frac{\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} t^{2} \exp \left(-t^{2} / 2 \sigma^{2}\right) d t}{\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} \exp \left(-t^{2} / 2 \sigma^{2}\right) d t}\right] \\
& =\sigma^{2} \\
& =\frac{1}{4 \pi}
\end{aligned}
$$

Using the fact that

$$
\exp \left(-\pi t^{2}\right) \stackrel{\mathcal{F}}{\longleftrightarrow} \exp \left(-\pi f^{2}\right) .
$$

we have

$$
W_{r m s}^{2}=\frac{1}{4 \pi} .
$$

Thus for the Gaussian pulse, we have

$$
T_{r m s} W_{r m s}=\frac{1}{4 \pi}
$$

Problem 4. (Orthogonal Signal Sets)

1. To find the minimum-energy signal set, we first compute the centroid of the signal set:

$$
a=\sum_{j=0}^{m-1} P_{H}(j) s_{j}(t)=\frac{1}{m} \sum_{j=0}^{m-1} \sqrt{\mathcal{E}_{s}} \phi_{j}(t) .
$$

so

$$
\begin{aligned}
s_{j}^{*}(t) & =s_{j}(t)-a \\
& =\sqrt{\mathcal{E}_{s}} \phi_{j}(t)-\frac{1}{m} \sum_{i=0}^{m-1} \sqrt{\mathcal{E}_{s}} \phi_{i}(t) \\
& =\sqrt{\mathcal{E}_{s}} \frac{m-1}{m} \phi_{j}(t)-\frac{1}{m} \sum_{i \neq j} \sqrt{\mathcal{E}_{s}} \phi_{i}(t) .
\end{aligned}
$$

2. Notice that $\sum_{j=0}^{m-1} s_{j}^{\star}(t)=0$ by the definition of $s_{j}^{\star}(t), \quad j=0,1, \cdots, m-1$. Hence, the m signals $\left\{s_{0}^{\star}(t), \cdots, s_{m-1}^{\star}(t)\right\}$ are linearly dependent. This means that their space has dimensionality less than m. We show that any collection of $m-1$ or less is linearly independent. That would prove that the dimensionality of the space $\left\{s_{0}^{\star}(t), \cdots, s_{m-1}^{\star}(t)\right\}$ is $m-1$. Without loss of generality we consider $s_{0}^{\star}(t), \cdots, s_{m-2}^{\star}(t)$. Assume that $\sum_{j=0}^{m-2} \alpha_{j} s_{j}^{\star}(t)=0$. Using the definition of $s_{j}^{\star}(t) \quad j=0,1, \cdots, m-1$ we may write $\sum_{j=0}^{m-2}\left(\alpha_{j}-\beta\right) s_{j}(t)-\beta s_{m-1}(t)=0$ where $\beta=\frac{1}{m} \sum_{j=0}^{m-1} \alpha_{j}$. But $s_{0}(t), s_{1}(t), \cdots, s_{m-1}(t)$ is an orthogonal set and this implies $\beta=0$ and $\alpha_{j}=\beta=0 \quad j=0,1, \cdots, m-2$. That means that $\alpha_{j}=0 \quad j=0,1, \cdots, m-2$. Hence, $s_{j}^{\star}(t) \quad j=0,1, \cdots, m-2$ are linearly independent. We have proved that the new set spans a space of dimension $m-1$.
3. It is easy to show that n-tuple corresponding to s_{j}^{\star} is $\sqrt{\mathcal{E}_{s}} \frac{m-1}{m}$ at position j and $\frac{\sqrt{\mathcal{E}_{s}}}{m}$ at all other positions. Clearly $\left\|s_{j}^{\star}\right\|^{2}=(m-1) \frac{\mathcal{E}_{s}}{m^{2}}+\frac{\mathcal{E}_{s}}{m^{2}}(m-1)^{2}=\mathcal{E}_{s}\left(1-\frac{1}{m}\right)$. This is independent of j so the average energy is also $\mathcal{E}_{s}\left(1-\frac{1}{m}\right)$.

Problem 5. (m-ary Frequency shift Keying)

1. Orthogonality requires $\int_{0}^{T} \cos \left(2 \pi\left(f_{c}+i \Delta f\right) t\right) \cos \left(2 \pi\left(f_{c}+j \Delta f\right) t\right) d t=0$ for every $i \neq$ j. Using the trigonometric identity $\cos (\alpha) \cos (\beta)=\frac{1}{2} \cos (\alpha+\beta)+\frac{1}{2} \cos (\alpha-\beta)$, an equivalent condition is $\frac{1}{2} \int_{0}^{T}\left[\cos (2 \pi(i-j) \Delta f t)+\cos \left(2 \pi\left(2 f_{c}+(i+j) \Delta f\right) t\right)\right] d t=0$. Integrating we obtain $\frac{\sin (2 \pi(i-j) \Delta f T)}{2 \pi(i-j) \Delta f}+\frac{\sin \left(2 \pi\left(2 f_{c}+(i+j) \Delta f\right) T\right)}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right)}=0$. As $f_{c} T$ is assumed to be an integer, the result can be simplified to $\frac{\sin (2 \pi(i-j) \Delta f T)}{2 \pi(i-j) \Delta f}+\frac{\sin (2 \pi(i+j) \Delta f T)}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right)}=0$. As i and j are integer this result is zeros for $i \neq j$ if and only if $2 \pi \Delta f T$ is an integer multiple of π. Hence, we obtain the minimum value of Δf if $2 \pi \Delta f T=\pi$ which gives $\Delta f=\frac{1}{2 T}$.
2. Proceeding similarly we will have orthogonality if and only if $\frac{\sin \left(2 \pi(i-j) \Delta f T+\theta_{i}-\theta_{j}\right)-\sin \left(\theta_{i}-\theta_{j}\right)}{2 \pi(i-j) \Delta f}+$ $\frac{\sin \left(2 \pi(i+j) \Delta f T+\theta_{i}+\theta_{j}\right)-\sin \left(\theta_{i}+\theta_{j}\right)}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right)}=0$. In this case we see that both parts become zero if and only if $2 \pi \Delta f T$ is an even multiple of π which means that the smallest Δf is $\Delta f=\frac{1}{T}$ which is twice the minimum frequency separation needed in the previous part. Hence, the cost of phase uncertainty is a bandwidth expansion by a factor of 2 .
3. The condition we obtained for the orthogonality in the first part consist of two terms as follows $\int_{0}^{T}\left[\cos (2 \pi(i-j) \Delta f t)+\cos \left(2 \pi\left(2 f_{c}+(i+j) \Delta f\right) t\right)\right] d t=0$. We saw that if $f_{c} T$ is exactly an integer number then with have orthogonality with $\Delta f=\frac{1}{2 T}$. Now assume that $f_{c} \gg M \Delta f$ in this case the integral value will be $\frac{\sin \left(2 \pi\left(2 f_{c}+(i+j) \Delta f\right) T\right.}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right.}$ which its absolute value is always less that $\frac{1}{2 \pi\left(2 f_{c}+(i+j) \Delta f\right.}$ which approaches zero as f_{c} becomes bigger and bigger. So if we choose $\Delta f=\frac{1}{2 T}$ and take $f_{c} \gg m \Delta f$ then we will have approximately orthogonality. In a similar way when we have a random phase shift then we can choose $\Delta f=\frac{1}{T}$ and take $f_{c} \gg m \Delta f$ to have orthogonality.
4. Integrating $s_{i}(t)^{2}$ over $[0, T]$ we obtain $A^{2} \times \frac{2}{T} \times \frac{1}{2} \times T=A^{2}$ which holds for every i. Hence, the mean energy of the constellation is A^{2} but this energy is transmitted during $[0, T]$ so the mean power will be $\frac{A^{2}}{T}$ which is independent of k.
5. We have M signals separated by Δf. The approximate bandwidth is $m \Delta f$. This means bandwidth $\frac{2^{k}}{2 T}$ in the former case, without random phase shift, and bandwidth $\frac{2^{k}}{T}$ in the latter case in which we have a random phase shift.
6. Practical systems have a constant B and a T which grows linearly with k. Even if we let T grow linearly with k, in the system considered here, B grows exponentially with k. This is not practical.
