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Problem 1.

(a) We have ρ(X∞
1 ) = 0. We show this by showing that ρ(X∞

1 ) ≤ δ for any δ > 0. To
see the last statement, build an invertible FSM which ”recognizes” a string of type
”ab...ab” for a particular even length, call it L, and outputs lets say ”0” at the end
of this string and returns to the starting state. Hence this machine will output an
infinite string of ”0” when the input is X∞

1 . From each state (including the starting
state) of the chain which recognizes the special string make an edge back to the
starting state in the case the next input is not the correct one. The output for each
such edge is 1 + ⌈logL⌉ bits long, the first bit is 1 to indicate that it is not the
special path and on the next ⌈logL⌉ bits we give the index of the state (in binary
representation) from which the return edge is drawn. This machine is clearly lossless
and has a compressibility of 1/L for the desired sequence.

(b) A machine as described above will have ρM (X∞
1 ) = 1/4. In fact, one cannot do better

than this. Consider a cycle, when from a given state we get back to the same state.
During such a cycle we have to output at least one symbol, because the machine has
to be information lossless. In an L state machine we eventually create such a cycle
within at most L steps. This means that we output at least one symbol for every L
input symbols, so ρM(X∞

1 ) ≥ 1/L.

(b) We have ρLZ = 0 since compressibility is non-negative and we know that the com-
pressibility of LZ is at least as good as that of any FSM, i.e., we know that ρLZ(X

∞
1 ) ≤

ρ(X∞
1 ).

(c) The dictionary increases by 1 every time and has size 2 in the beginning. Hence, if
we look at lets say c steps of the algorithm then we need in total

c
∑

i=1

⌈log(1 + i)⌉ ≤ c log(2(c+ 1))

bits to describe the output.

What are the words which we are using. Note that the parsing is a, b, ab, aba,
ba, bab,... Note that in average at most every second step the length of the used
dictionary word increases by 1, i.e., we have a linear increase in the used dictionary
words. Therefore, if we compute the total length which we have parsed after c steps,
this length increases like the squre of c.

It follows that the ratio of the total number of bits used divided by the total length
described behaves like 1/c, i.e., it tends to 0.

Problem 2. (a) By the chain rule

I(U, T ;V ) = I(U ;V ) + I(T ;V |U) = I(U ;V ),



since I(T ;V |U) = 0 from the Markov property. Also,

I(U, T ;V ) = I(T ;V ) + I(U ;V |T ) ≥ I(U ;V |T ),

from the non-negativity of the mutual information. These together imply that I(U ;V ) ≥
I(U ;V |T ).

(b)
I(X ; Y |W ) = Pr{W = 1}I(X ; Y |W = 1) + Pr{W = 2}I(X ; Y |W = 2)

Conditional on W = k, the distribution of (X, Y ) is pk(x)p(y|x), thus

I(X ; Y |W = 1) = λI1 + (1− λ)I2.

(c) We obtain p(x) by summing p(w, x, y) over y and w. This gives

p(x) = λp1(x) + (1− λ)p2(x).

(d) Note that
p(w, x, y) = p(w)p(x|w)p(y|x),

that is Y is independent of W when X is given. Thus from (a)

I(X ; Y ) ≥ I(X ; Y |W ). (1)

Letting f(pX) denote the value of I(X ; Y ) as a function of the distribution of X we
can rewrite (1) as

f(λp1 + (1− λ)p2) ≥ λf(p1) + (1− λ)f(p2),

which says that f is concave.

Problem 3.

(a) By Bayes rule, for any events A and B,

Pr(A|B) =
Pr(A) Pr(B|A)

Pr(B)
.

In this case, we wish to calculate the conditional probability of a1 given the channel
output. Thus we take the event A to the event that the source produced a1, and B to
be the event corresponding to one of the 8 possible output sequences. Thus Pr(A) =
1/2, and Pr(B|A) = ǫi(1−ǫ)3−i, where i is the number of ones in the received sequence.
Pr(B) can then be calculated as Pr(B) = Pr(a1) Pr(B|a1) + Pr(a2) Pr(B|a2). Thus
we can calculate

Pr(a1|000) =
1
2
(1− ǫ)3

1
2
(1− ǫ)3 + 1

2
ǫ3

Pr(a1|100) = Pr(a1|010) = Pr(a1|001) =
1
2
(1− ǫ)2ǫ

1
2
(1− ǫ)2ǫ+ 1

2
ǫ2(1− ǫ)

Pr(a1|110) = Pr(a1|011) = Pr(a1|101) =
1
2
(1− ǫ)ǫ2

1
2
(1− ǫ)ǫ2 + 1

2
ǫ(1− ǫ)2

Pr(a1|111) =
1
2
ǫ3

1
2
ǫ3 + 1

2
(1− ǫ)3

2



(b) If ǫ < 1/2, then the probability of a1 given 000,001,010 or 100 is greater than 1/2,
and the probability of a2 given 110,011,101 or 111 is greater than 1/2. Therefore, the
decoding rule above chooses the source symbol that has maximum probability given
the observed output. This is the maximum a posteriori decoding rule, and is optimal
in that it minimizes the probability of error. To see that this is true, let the input
source symbol be X , let the output of the channel be denoted by Y and the decoded
symbol be X̂(Y ). Then

Pr(E) = Pr(X 6= X̂)

=
∑

y

Pr(Y = y) Pr(X 6= X̂|Y = y)

=
∑

y

Pr(Y = y)
∑

x 6=x̂(y)

Pr(x|Y = y)

=
∑

y

Pr(Y = y) (1− Pr(x̂(y)|Y = y))

=
∑

y

Pr(Y = y)−
∑

y

Pr(Y = y) Pr(x̂(y)|Y = y)

= 1−
∑

y

Pr(Y = y) Pr(x̂(y)|Y = y)

and thus to minimize the probability of error, we have to maximize the second term,
which is maximized by choosing x̂(y) to the the symbol that maximizes the conditional
probability of the source symbol given the output.

(c) The probability of error can also be expanded

Pr(E) = Pr(X 6= X̂)

=
∑

x

Pr(x) Pr(X̂ 6= x)

= Pr(a1) Pr(Y = 011, 110, 101, or 111)

+ Pr(a2) Pr(Y = 000, 001, 010 or 100)

=
1

2

(

3ǫ2(1− ǫ) + ǫ3
)

+
1

2

(

3ǫ2(1− ǫ) + ǫ3
)

= 3ǫ2(1− ǫ) + ǫ3.

(d) By extending the same arguments, it is easy to see that the decoding rule that
minimizes the probability of error is the maximum a posteriori decoding rule, which
in this case is the same as the maximum likelihood decoding rule (since the two input
symbols are equally likely). So we choose the source symbol that is most likely to
have produced the given output. This corresponds to choosing a1 if the number of
1’s in the received sequence is n or less, and choosing a2 otherwise. The probability
of error is then equal to (by symmetry) the probability of error given that a1 was
sent, which is the probability that n+1 or more 0’s have been changed to 1’s by the
channel. This probability is

Pr(E) =
2n+1
∑

i=n+1

(

2n+ 1

i

)

ǫi(1− ǫ)2n+1−i

3



This probability goes to 0 as n → ∞, since this is the probability that the number
of 1’s is n+1 or more, and since the expected proportion of 1’s is nǫ < n+1, by the
weak law of large numbers the above probability goes to 0 as n → ∞.

Problem 4.

(a) The statistician calculates Ỹ = g(Y ). Since X → Y → Ỹ forms a Markov chain, we
can apply the data processing inequality. Hence for every distribution on X ,

I(X ; Y ) ≥ I(X ; Ỹ ).

Let p̃(x) be the distribution on x that maximizes I(X ; Ỹ ). Then

C = max
p(x)

I(X ; Y ) ≥ I(X ; Y )p(x)=p̃(x) ≥ I(X ; Ỹ )p(x)=p̃(x) = max
p(x)

I(X ; Ỹ ) = C̃.

Thus, the statistician is wrong and processing the output does not increase capacity.

(b) We have equality (no decrease in capacity) in the above sequence of inequalities
only if we have equality in data processing inequality, i.e., for the distribution that
maximizes I(X ; Ỹ ), we have X → Ỹ → Y forming a Markov chain, in other words if
given Ỹ , X and Y are independent.

Problem 5.
First we express I(X ; Y ), the mutual information between the input and output of the

Z-channel, as a function of x = Pr(X = 1):

H(Y |X) = xh2(ε)

H(Y ) = h2(Pr(Y = 1)) = h2((1− ε)x)

I(X ; Y ) = H(Y )−H(Y |X) = h2((1− ε)x)− xh2(ε) (2)

We deduce that if ε = 0, the capacity equals 1 bit/symbol and is attained for x = 1/2. If
ε = 1, then I(X ; Y ) = 0 for every 0 ≤ x ≤ 1. Hence, the capacity is equal to zero and any
value of x achieves it. From now on we assume ε 6= 0, 1.

Using elementary calculus, we have that

d

dx
I(X ; Y ) = (1− ε) log

(

1− (1− ε)x

(1− ε)x

)

− h2(ε) .

Imposing the condition d
dx
I(X ; Y ) = 0 yields to the unique solution

x∗(ε) =
(

(1− ε)(2
h2(ε)
1−ε + 1)

)−1

.

From (2) we have I(X ; Y ) = 0 for x = 0 and x = 1, and therefore the maximum of the
mutual information is achieved for x = x∗(ε). The capacity C(ε) is given by

C(ε) = h2((1− ε)x∗(ε))− x∗(ε)h2(ε) bits/symbol.
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