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Solution of Homework 6

Problem 1. (Uniform Polar To Cartesian)

1. At first look it seems that probability is uniformly distributed over the disk but in the

next part we will show that this is not true.

2. We know that R is uniformly distributed in [0, 1] and Φ is uniformly distributed in

[0, 2π[ so we have fR(r) = 1 if 0 ≤ r ≤ 1 and fΦ(φ) = 1
2π

if 0 ≤ φ < 2π. As these two

random variables are independent we have fR,Φ(r, φ) =

{
1

2π
0 ≤ r ≤ 1 and 0 ≤ φ < 2π

0 otherwise.

It can be easily shown that the Jacobian determinant is r =
√
x2 + y2 and so the proba-

bility distribution in Cartesian coordinates will be fX,Y (x, y) =

{
1

2π
√
x2+y2

x2 + y2 ≤ 1

0 otherwise.

3. We see that the probability distribution is not distributed uniformly. This makes

sense because rings of equal width have the same probability but not the same area.

Hence the density is not constant. Actually as the radius of the ring increases, its area

increases proportional to the radius, so the distribution decreases proportional to the

inverse of the radius.

Problem 2. (Gaussian Random Variables)

1. (a) The joint density of X and Y is fX,Y (x, y) = 1
2πσ2 e

−x
2+y2

2σ2 . Using polar change of

variable we have

fR,Θ(r, θ) = fX,Y (x, y) |x=r cos θ,y=r sin θ |J(r, θ)|

=
r

2πσ2
e−

r2

2σ2

(b) We see that we can factorize the joint probability density as fR,Θ(r, θ) =
(

1
2π

)( r

σ2
e−

r2

2σ2

)
,

which implies that R and Θ are independent.



(c) From the factorization fΘ(θ) = c
2π

where c is the normalizing constant. As θ ∈
[0, 2π) we obtain that c = 1. This implies that Θ is uniformly distributed over

[0, 2π).

(d) Any rotation of X and Y just changes Θ. As Θ is uniformly distributed, any

rotation of Θ is again uniformly distributed over [0, 2π). Hence, rotation doesn’t

change the joint distribution of X and Y.

(e) We see that the joint probability density of X and Y just depends on r =
√
x2 + y2

which is invariant under rotation. This implies the invariance of joint density

under rotation.

2. (a) φ(r) = fX,Y (x, y) = fX(x)fY (y) = g(x)g(y) where we used the i.i.d property of X

and Y.

(b) Taking derivative w.r.t x we obtain g′(x)g(y) = φ′(r) dr
dx

= φ′(r)x
r
. Dividing both

sides by xφ(r) we obtain g′(x)
xg(x)

= φ′(r)
rφ(r)

. By symmetry we have

g′(x)

xg(x)
=
φ′(r)

rφ(r)
=

g′(y)

yg(y)
(1)

(c) In (1) the left side is a function of x, whereas the right side is a function of y.

Hence the identity holds if both are equal to a constant λ. In other words,

g′(x)

xg(x)
=
φ′(r)

rφ(r)
=

g′(y)

yg(y)
= λ. (2)

(d) Integrating the identity (2), we obtain

g′(x)

xg(x)
= λ⇒ g′(x)

g(x)
= λx⇒ log

(
g(x)

c

)
= λ

x2

2
⇒ g(x) = c eλ

x2

2

which has the form of a zero mean Gaussian distribution.

Problem 3. (Real-Valued Gaussian Random Variables)

1. It is sufficient to find the marginal distribution of X and show that it is also Gaus-

sian. If we define ρ , σXY
σXσY

then we can write joint distribution as fX,Y (x, y) =
1

2πσXσY
√

1−ρ2
exp(− 1

2(1−ρ2)
( x

2

σ2
X
− 2ρxy

σXσY
+ y2

σ2
Y

)). Now put the y term in square form and

so we have fX,Y (x, y) = 1

2πσXσY
√

1−ρ2
exp(− x2

2σ2
X

) exp(− 1
2(1−ρ2)σ2

Y
(y − ρσY x

σX
)2). If we in-

tegrate from −∞ up to ∞ with respect to y and use the formula
∫
exp(−αx2) =

√
π
α

we will have fX(x) = 1√
2πσ2

X

exp(− x2

2σ2
X

) which is the Gaussian distribution with mean

0 and variance σ2
X . And using a similar method we can show that Y ∼ N (0, σ2

Y ).
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2. Using the notes we know that if X, Y are jointly Gaussian random variables then any

linear combination αX + βY for every α and β will be Gaussian distributed. If we set

α = 1 and β = 0 then we obtain X which should be Gaussian distributed and similarly

for α = 0 and β = 1.

3. If X and Y are independent then fX,Y (x, y) = fX(x)fY (y) and so putting Gaussian

distribution formula into the expression we will have fX,Y (x, y) = 1
2πσXσY

exp(−( x2

2σ2
X

+
y2

2σ2
Y

)) which has jointly Gaussian distribution form and so X and Y will be jointly

Gaussian random variables.

4. As an example suppose that E is a random variable that takes values +1 and −1 with

equal probability and X is a zero mean and unit variance Gaussian random variable

and independent of E. In this case we consider the random variables Z = EX and

W = X then it can be shown that Z and W have the same distribution as X but

are not independent because if W takes value a then Z = Ea which can only take

±a. If W and Z are jointly Gaussian then W + Z should be also Gaussian but

W + Z = (1 + E)X which takes value 0 with probability 1
2

and since W + Z is not

Gaussian, W and Z can’t be jointly Gaussian.

5. X and Y are Gaussian and independent. They are also jointly Gaussian. Hence, any

linear combination of X and Y specifically Z , X + Y will be Gaussian and so it is

sufficient to find the mean and the variance of this random variable. µZ = µX +µY = 0

and because X and Y are independent σ2
Z = σ2

X +σ2
Y . Hence X +Y ∼ N (0, σ2

X +σ2
Y ).

Problem 4. (Correlated Noise)

1. First remember that Z is a jointly Gaussian random vector. Hence any linear trans-

formation of Z will also be a Gaussian random vector. A Gaussian random vector is

characterized by its mean and covariance matrix. Using the hint, we see that if we take

W = AZ then W will have zero mean and identity covariance matrix. Also remember

that for a jointly Gaussian random vector uncorrelatedness implies independence and

so the components of W =

[
w1

w2

]
are independent. Notice also that determinant of

A is not zero. Hence the transformation is reversible.

2. The new hypothesis testing problem will be H = i : Ŷ = ŝi + W i = 1, 2, 3, 4

where ŝi = Bsi. Hence the new constellation points will be s0 →
[

0
1
2

]
, s1 →

[
1
2

−1
4

]
,

s2 →
[

0

−1
2

]
and s3 →

[
−1

2
1
4

]
3. The probability of error is minimized by minimum distance decoder. Unfortunately the

boundary regions are not orthogonal to one another and this makes it more difficult to
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compute the probability of error. However from the drawing of new constellation points

we see immediately that Rc
0 = B0,1∪B0,2∪B0,3. Hence, using the union bound Pe(0) ≤

Q( ||s0−s3||
2σ

) + Q( ||s0−s2||
2σ

) + Q( ||s0−s1||
2σ

) and by symmetry similar results hold for other

hypotheses. Hence, using the fact that σ = 1 we have Pe(0) = Pe(2) < Q(
√

13
4

)+Q(1)+

Q(
√

5
4

) and Pe(1) = Pe(3) < Q(
√

13
4

) + Q(
√

5
4

) + Q(
√

5
2

). And assuming equiprobable

canstellation points we have Pe = Pe(0)+Pe(1)
2

< Q(
√

13
4

) +Q(
√

5
4

) +
Q(

√
5
2

)+Q(1)

2
.
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