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Problem 1. Let X i denote X1, . . . , Xi.

(a) By the chain rule for entropy,

H(X1, X2, . . . , Xn)

n
=

∑n

i=1 H(Xi|X i−1)

n
(1)

=
H(Xn|Xn−1) +

∑n−1
i=1 H(Xi|X i−1)

n
(2)

=
H(Xn|Xn−1) + H(X1, X2, . . . , Xn−1)

n
. (3)

From stationarity it follows that for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xi|X i−1),

which further implies, by summing both sides over i = 1, . . . , n − 1 and dividing by
n − 1, that,

H(Xn|Xn−1) ≤
∑n−1

i=1 H(Xi|X i−1)

n − 1
(4)

=
H(X1, X2, . . . , Xn−1)

n − 1
. (5)

Combining (3) and (5) yields,

H(X1, X2, . . . , Xn)

n
≤ 1

n

[

H(X1, X2, . . . , Xn−1)

n − 1
+ H(X1, X2, . . . , Xn−1)

]

(6)

=
H(X1, X2, . . . , Xn−1)

n − 1
. (7)

(b) By stationarity we have for all 1 ≤ i ≤ n,

H(Xn|Xn−1) ≤ H(Xi|X i−1),

which implies that,

H(Xn|Xn−1) =

∑n

i=1 H(Xn|Xn−1)

n
(8)

≤
∑n

i=1 H(Xi|X i−1)

n
(9)

=
H(X1, X2, . . . , Xn)

n
. (10)

Problem 2. By the chain rule for entropy,

H(X0|X−1, . . . , X−n) = H(X0, X−1, . . . , X−n) − H(X−1, . . . , X−n) (11)

= H(X0, X1, . . . , Xn) − H(X1, . . . , Xn) (12)

= H(X0|X1, . . . , Xn), (13)

where (12) follows from stationarity.



Problem 3. Let h2(p) = −p log p − (1 − p) log p denote the entropy of a binary valued
random variable with distribution p, 1 − p. The entropy per symbol of the source is

h2(p1) = −p1 log p1 − (1 − p1) log(1 − p1)

and the average symbol duration (or time per symbol) is

T (p1) = 1 · p1 + 2 · p2 = p1 + 2(1 − p1) = 2 − p1 = 1 + p2 .

Therefore the source entropy per unit time is

f(p1) =
h2(p1)

T (p1)
=

−p1 log p1 − (1 − p1) log(1 − p1)

2 − p1
.

Since f(0) = f(1) = 0, the maximum value of f(p1) must occur for some point p1 such
that 0 < p1 < 1 and ∂f/∂p1 = 0.

∂

∂p1

h2(p1)

T (p1)
=

T (∂h2/∂p1) − h2(∂T/∂p1)

T 2

After some calculus, we find that the numerator of the above expression (assuming natural
logarithms) is

T (∂H/∂p1) − H(∂T/∂p1) = ln(1 − p1) − 2 ln p1 ,

which is zero when 1 − p1 = p2
1 = p2, that is, p1 = 1

2
(
√

5 − 1) = 0.61803, the reciprocal of

the golden ratio, 1
2
(
√

5 + 1) = 1.61803. The corresponding entropy per unit time is

h2(p1)

T (p1)
=

−p1 log p1 − p2
1 log p2

1

2 − p1
=

−(1 + p2
1) log p1

1 + p2
1

= − log p1 = 0.69424 bits.

Problem 4. (a) We can write the following chain of inequalities:

Qn(x)
1
=

n
∏

i=1

Q(xi)
2
=

∏

a∈X

Q(a)N(a|x) 3
=

∏

a∈X

Q(a)nPx(a)=
∏

a∈X

2nPx(a) log Q(a) (14)

=
∏

a∈X

2n(Px(a) log Q(a)−Px(a) log Px(a)+Px(a) log Px(a)) (15)

= 2n
P

a∈X
(−Px(a) log Px(a)

Q(a)
+Px(a) log Px(a)) = 2n(−D(Px||Q)+H(Px)),

where 1 follows because the sequence is i.i.d., grouping symbols gives 2, and 3 is the
definition of type.

(b) Upper bound: We know that

n
∑

k=0

(

n

k

)

pk(1 − p)n−k = 1.

Consider one term and set p = k/n. Then,

1 ≥
(

n

k

) (

k

n

)k (

1 − k

n

)n−k

=

(

n

k

)

2n( k
n

log k
n

+ n−k
n

log n−k
n ) =

(

n

k

)

2−nh2(
k
n

)

2



Lower bound: Define Sj =
(

n

j

)

pj(1 − p)n−j . We can compute

Sj+1

Sj

=
n − j

j + 1

p

1 − p
.

One can see that this ratio is a decreasing function in j. It equals 1, if j = np+p−1,
so

Sj+1

Sj
< 1 for j = ⌊np + p⌋ and

Sj+1

Sj
≥ 1 for any smaller j. Hence, Sj takes its

maximum value at j = ⌊np + p⌋, which equals k in our case. From this we have that

1 =
n

∑

j=0

(

n

j

)

pj(1 − p)n−j ≤ (n + 1) max
j

(

n

j

)

pj(1 − p)j

≤ (n + 1)

(

n

k

) (

k

n

)k (

1 − k

n

)n−k

=

(

n

k

)

2−nh2(
k
n

). (16)

The last equality comes from the derivation we had when proving the upper bound.

Problem 5. (a)

E[Fn] = E[F0X0X1 . . . Xn] = F0(E[X1])
n = F0(9/8)n

We exploited the i.i.d. property of the sequence. One can see that E[Fn] → ∞ with
n → ∞.

(b)

ln = E[log2 Fn] = E[log2(F0X0X1 . . .Xn)] = E

[

log2 F0 +

n
∑

i=1

log2 Xi

]

=

= E[log2 F0] + nE[log2 X1] = log2 F0 −
n

2
. (17)

(c) It concentrates around 2ln . Fn in itself is not a sum of i.i.d. variables. Taking its
logarithm results such a sum, so the law of large numbers applies.

log2 Fn = log2 F0 +

n
∑

i=1

log2 Xi → log2 F0 + nE[log X1] = log2 F0 −
n

2
.

(d) From the previous result it follows that although it seems appealing that the expected
value of our fortune goes to infinity, it actually converges to 0 (very rapidly).

(e) If we keep a proportion r of the money in reserve at each play, we change the evolution
of the game as follows: starting from a unit fortune, our fortune become r+(1−r)X.
Thus, this is equivalent to replacing X with r+(1−r)X. Consequently, the quantity
to maximize is

E[log2(r+(1−r)X)] =
1

2
log(r+(1−r)2)+

1

2
log(r+(1−r)/4) =

1

2
[log(2−r)+log(1+3r)−log 4].

By differentiation, the maximum appears at the value of r that solves

1

2 − r
=

3

1 + 3r
,

which is 5
6
; with a growth rate 1

2
log 49

48
. Note that now, the fortune does grow to

infinity almost surely.
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