ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 8

Information Theory and Coding
Homework 4 October 11, 2011

Problem 1. Let X^{i} denote X_{1}, \ldots, X_{i}.
(a) By the chain rule for entropy,

$$
\begin{align*}
\frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n} & =\frac{\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right)}{n} \tag{1}\\
& =\frac{H\left(X_{n} \mid X^{n-1}\right)+\sum_{i=1}^{n-1} H\left(X_{i} \mid X^{i-1}\right)}{n} \tag{2}\\
& =\frac{H\left(X_{n} \mid X^{n-1}\right)+H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n} . \tag{3}
\end{align*}
$$

From stationarity it follows that for all $1 \leq i \leq n$,

$$
H\left(X_{n} \mid X^{n-1}\right) \leq H\left(X_{i} \mid X^{i-1}\right)
$$

which further implies, by summing both sides over $i=1, \ldots, n-1$ and dividing by $n-1$, that,

$$
\begin{align*}
H\left(X_{n} \mid X^{n-1}\right) & \leq \frac{\sum_{i=1}^{n-1} H\left(X_{i} \mid X^{i-1}\right)}{n-1} \tag{4}\\
& =\frac{H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n-1} . \tag{5}
\end{align*}
$$

Combining (3) and (5) yields,

$$
\begin{align*}
\frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n} & \leq \frac{1}{n}\left[\frac{H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n-1}+H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)\right] \tag{6}\\
& =\frac{H\left(X_{1}, X_{2}, \ldots, X_{n-1}\right)}{n-1} \tag{7}
\end{align*}
$$

(b) By stationarity we have for all $1 \leq i \leq n$,

$$
H\left(X_{n} \mid X^{n-1}\right) \leq H\left(X_{i} \mid X^{i-1}\right)
$$

which implies that,

$$
\begin{align*}
H\left(X_{n} \mid X^{n-1}\right) & =\frac{\sum_{i=1}^{n} H\left(X_{n} \mid X^{n-1}\right)}{n} \tag{8}\\
& \leq \frac{\sum_{i=1}^{n} H\left(X_{i} \mid X^{i-1}\right)}{n} \tag{9}\\
& =\frac{H\left(X_{1}, X_{2}, \ldots, X_{n}\right)}{n} . \tag{10}
\end{align*}
$$

Problem 2. By the chain rule for entropy,

$$
\begin{align*}
H\left(X_{0} \mid X_{-1}, \ldots, X_{-n}\right) & =H\left(X_{0}, X_{-1}, \ldots, X_{-n}\right)-H\left(X_{-1}, \ldots, X_{-n}\right) \tag{11}\\
& =H\left(X_{0}, X_{1}, \ldots, X_{n}\right)-H\left(X_{1}, \ldots, X_{n}\right) \tag{12}\\
& =H\left(X_{0} \mid X_{1}, \ldots, X_{n}\right), \tag{13}
\end{align*}
$$

where (12) follows from stationarity.

Problem 3. Let $h_{2}(p)=-p \log p-(1-p) \log p$ denote the entropy of a binary valued random variable with distribution $p, 1-p$. The entropy per symbol of the source is

$$
h_{2}\left(p_{1}\right)=-p_{1} \log p_{1}-\left(1-p_{1}\right) \log \left(1-p_{1}\right)
$$

and the average symbol duration (or time per symbol) is

$$
T\left(p_{1}\right)=1 \cdot p_{1}+2 \cdot p_{2}=p_{1}+2\left(1-p_{1}\right)=2-p_{1}=1+p_{2} .
$$

Therefore the source entropy per unit time is

$$
f\left(p_{1}\right)=\frac{h_{2}\left(p_{1}\right)}{T\left(p_{1}\right)}=\frac{-p_{1} \log p_{1}-\left(1-p_{1}\right) \log \left(1-p_{1}\right)}{2-p_{1}} .
$$

Since $f(0)=f(1)=0$, the maximum value of $f\left(p_{1}\right)$ must occur for some point p_{1} such that $0<p_{1}<1$ and $\partial f / \partial p_{1}=0$.

$$
\frac{\partial}{\partial p_{1}} \frac{h_{2}\left(p_{1}\right)}{T\left(p_{1}\right)}=\frac{T\left(\partial h_{2} / \partial p_{1}\right)-h_{2}\left(\partial T / \partial p_{1}\right)}{T^{2}}
$$

After some calculus, we find that the numerator of the above expression (assuming natural logarithms) is

$$
T\left(\partial H / \partial p_{1}\right)-H\left(\partial T / \partial p_{1}\right)=\ln \left(1-p_{1}\right)-2 \ln p_{1}
$$

which is zero when $1-p_{1}=p_{1}^{2}=p_{2}$, that is, $p_{1}=\frac{1}{2}(\sqrt{5}-1)=0.61803$, the reciprocal of the golden ratio, $\frac{1}{2}(\sqrt{5}+1)=1.61803$. The corresponding entropy per unit time is

$$
\frac{h_{2}\left(p_{1}\right)}{T\left(p_{1}\right)}=\frac{-p_{1} \log p_{1}-p_{1}^{2} \log p_{1}^{2}}{2-p_{1}}=\frac{-\left(1+p_{1}^{2}\right) \log p_{1}}{1+p_{1}^{2}}=-\log p_{1}=0.69424 \text { bits. }
$$

Problem 4. (a) We can write the following chain of inequalities:

$$
\begin{align*}
Q^{n}(\mathbf{x}) & \stackrel{1}{=} \prod_{i=1}^{n} Q\left(x_{i}\right) \stackrel{2}{=} \prod_{a \in \mathcal{X}} Q(a)^{N(a \mid \mathbf{x})} \stackrel{3}{=} \prod_{a \in \mathcal{X}} Q(a)^{n P_{\mathbf{x}}(a)}=\prod_{a \in \mathcal{X}} 2^{n P_{\mathbf{x}}(a) \log Q(a)} \tag{14}\\
& =\prod_{a \in \mathcal{X}} 2^{n\left(P_{\mathbf{x}}(a) \log Q(a)-P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)+P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)\right)} \tag{15}\\
& =2^{n \sum_{a \in \mathcal{X}}\left(-P_{\mathbf{x}}(a) \log \frac{P_{\mathbf{x}}(a)}{Q(a)}+P_{\mathbf{x}}(a) \log P_{\mathbf{x}}(a)\right)}=2^{n\left(-D\left(P_{\mathbf{x}} \| Q\right)+H\left(P_{\mathbf{x}}\right)\right)},
\end{align*}
$$

where 1 follows because the sequence is i.i.d., grouping symbols gives 2 , and 3 is the definition of type.
(b) Upper bound: We know that

$$
\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=1
$$

Consider one term and set $p=k / n$. Then,

$$
1 \geq\binom{ n}{k}\left(\frac{k}{n}\right)^{k}\left(1-\frac{k}{n}\right)^{n-k}=\binom{n}{k} 2^{n\left(\frac{k}{n} \log \frac{k}{n}+\frac{n-k}{n} \log \frac{n-k}{n}\right)}=\binom{n}{k} 2^{-n h_{2}\left(\frac{k}{n}\right)}
$$

Lower bound: Define $S_{j}=\binom{n}{j} p^{j}(1-p)^{n-j}$. We can compute

$$
\frac{S_{j+1}}{S_{j}}=\frac{n-j}{j+1} \frac{p}{1-p}
$$

One can see that this ratio is a decreasing function in j. It equals 1 , if $j=n p+p-1$, so $\frac{S_{j+1}}{S_{j}}<1$ for $j=\lfloor n p+p\rfloor$ and $\frac{S_{j+1}}{S_{j}} \geq 1$ for any smaller j. Hence, S_{j} takes its maximum value at $j=\lfloor n p+p\rfloor$, which equals k in our case. From this we have that

$$
\begin{align*}
1 & =\sum_{j=0}^{n}\binom{n}{j} p^{j}(1-p)^{n-j} \leq(n+1) \max _{j}\binom{n}{j} p^{j}(1-p)^{j} \\
& \leq(n+1)\binom{n}{k}\left(\frac{k}{n}\right)^{k}\left(1-\frac{k}{n}\right)^{n-k}=\binom{n}{k} 2^{-n h_{2}\left(\frac{k}{n}\right)} \tag{16}
\end{align*}
$$

The last equality comes from the derivation we had when proving the upper bound.
Problem 5. (a)

$$
E\left[F_{n}\right]=E\left[F_{0} X_{0} X_{1} \ldots X_{n}\right]=F_{0}\left(E\left[X_{1}\right]\right)^{n}=F_{0}(9 / 8)^{n}
$$

We exploited the i.i.d. property of the sequence. One can see that $E\left[F_{n}\right] \rightarrow \infty$ with $n \rightarrow \infty$.
(b)

$$
\begin{align*}
l_{n} & =E\left[\log _{2} F_{n}\right]=E\left[\log _{2}\left(F_{0} X_{0} X_{1} \ldots X_{n}\right)\right]=E\left[\log _{2} F_{0}+\sum_{i=1}^{n} \log _{2} X_{i}\right]= \\
& =E\left[\log _{2} F_{0}\right]+n E\left[\log _{2} X_{1}\right]=\log _{2} F_{0}-\frac{n}{2} \tag{17}
\end{align*}
$$

(c) It concentrates around $2^{l_{n}} . F_{n}$ in itself is not a sum of i.i.d. variables. Taking its logarithm results such a sum, so the law of large numbers applies.

$$
\log _{2} F_{n}=\log _{2} F_{0}+\sum_{i=1}^{n} \log _{2} X_{i} \rightarrow \log _{2} F_{0}+n E\left[\log X_{1}\right]=\log _{2} F_{0}-\frac{n}{2}
$$

(d) From the previous result it follows that although it seems appealing that the expected value of our fortune goes to infinity, it actually converges to 0 (very rapidly).
(e) If we keep a proportion r of the money in reserve at each play, we change the evolution of the game as follows: starting from a unit fortune, our fortune become $r+(1-r) X$. Thus, this is equivalent to replacing X with $r+(1-r) X$. Consequently, the quantity to maximize is
$E\left[\log _{2}(r+(1-r) X)\right]=\frac{1}{2} \log (r+(1-r) 2)+\frac{1}{2} \log (r+(1-r) / 4)=\frac{1}{2}[\log (2-r)+\log (1+3 r)-\log 4]$.
By differentiation, the maximum appears at the value of r that solves

$$
\frac{1}{2-r}=\frac{3}{1+3 r},
$$

which is $\frac{5}{6}$; with a growth rate $\frac{1}{2} \log \frac{49}{48}$. Note that now, the fortune does grow to infinity almost surely.

