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Homework 3

Reading for next week: From m-ary Hypothesis Testing (Section 2.2.2) up to and includ-

ing Irrelevance and Sufficient Statistic (Section 2.5).

Problem 1. (The “Wetterfrosch”)

Let us assume that a “weather frog” bases his forecast for tomorrow’s weather entirely

on today’s air pressure. Determining a weather forecast is a hypothesis testing problem.

For simplicity, let us assume that the weather frog only needs to tell us if the forecast for

tomorrow’s weather is “sunshine” or “rain”. Hence we are dealing with binary hypothesis

testing. Let H = 0 mean “sunshine” and H = 1 mean “rain”. We will assume that both

values of H are equally likely, i.e. PH(0) = PH(1) = 1
2
.

Measurements over several years have led the weather frog to conclude that on a day that

precedes sunshine the pressure may be modeled as a random variable Y with the following

probability density function:

fY |H(y|0) =

{
A− A

2
y, 0 ≤ y ≤ 1

0, otherwise.

Similarly, the pressure on a day that precedes a rainy day is distributed according to

fY |H(y|1) =

{
B + B

3
y, 0 ≤ y ≤ 1

0, otherwise.

The weather frog’s goal in life is to guess the value of H after measuring Y .

1. Determine A and B.

2. Find the a posteriori probability PH|Y (0|y). Also find PH|Y (1|y). Hint: Use Bayes’ rule.



3. Plot PH|Y (0|y) and PH|Y (1|y) as a function of y.Show that the implementation of the

decision rule Ĥ(y) = arg maxi PH|Y (i|y) reduces to

Ĥθ(y) =

{
0, if y ≤ θ

1, otherwise,
(1)

for some threshold θ and specify the threshold’s value. Do so by direct calculation

rather than using the general result.

4. Now assume that you implement the decision rule Ĥγ(y) and determine, as a function

of γ, the probability that the decision rule decides Ĥ = 1 given that H = 0. This

probability is denoted Pr{Ĥ(y) = 1|H = 0}.

5. For the same decision rule, determine the probability of error Pe(γ) as a function of γ.

Evaluate your expression at γ = θ.

6. Using calculus, find the γ that minimizes Pe(γ) and compare your result to θ. Could

you have found the minimizing γ without any calculation?

Problem 2. (Hypothesis Testing in Laplacian Noise)

Consider the following hypothesis testing problem between two equally likely hypotheses.

Under hypothesis H = 0, the observable Y is equal to a + Z where Z is a random variable

with Laplacian distribution

fZ(z) =
1

2
e−|z|.

Under hypothesis H = 1, the observable is given by −a + Z. You may assume that a is

positive.

1. Find and draw the density fY |H(y|0) of the observable under hypothesis H = 0, and

the density fY |H(y|1) of the observable under hypothesis H = 1.

2. Find the decision rule that minimizes the probability of error. Write out the expression

for the likelihood ratio.

3. Compute the probability of error of the optimal decision rule.

Problem 3. (Discrete Additive Gaussian Channel)

The communication channel between a transmitter and a receiver is an AWG channel. If

the input of the channel at time i is x then the output of the channel is x + Ni where

Ni ∼ N (0, σ2) is the additive noise of the channel. We assume that Ni is a sequence of i.i.d.

random variables. We are going to send one bit of information through this channel in the

following way : If the information bit is 1 we send A, n times through the channel. So the

received sequence will be Yi = A + Ni, i = 1, . . . , n whereas if the information bit is 0 we

send −A, n times through the channel.
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1. Write the problem as a hypothesis testing problem.

2. Derive the MAP rule assuming that 0 and 1 are equiprobable.

3. Find the error probability of the MAP rule and write it as a function of SNR , A2

σ2

and n. Hint: use the Q-Function defined as :

Q(x) ,
1√
2π

∫ ∞
x

e−
t2

2 dt.

4. Use the upper bound Q(x) ≤ 1
2
e−

x2

2 to show that the error probability, as a function

of n, goes exponentially fast to zero.

Problem 4. (Poisson Parameter Estimation)

In this example there are two hypotheses, H = 0 and H = 1 which occur with probabilities

PH(0) = p0 and PH(1) = 1−p0, respectively. The observable is y ∈ N0, i.e. y is a nonnegative

integer. Under hypothesis H = 0, y is distributed according to a Poisson law with parameter

λ0, i.e.

pY |H(y|0) =
λy0
y!
e−λ0 . (2)

Under hypothesis H = 1,

pY |H(y|1) =
λy1
y!
e−λ1 . (3)

This example is in fact modeling the reception of photons in an optical fiber (for more details,

see the Example in Section 2.2 of the notes).

1. Derive the MAP decision rule by indicating likelihood and log-likelihood ratios.

Hint: The direction of an inequality changes if both sides are multiplied by a negative

number.

2. Derive the formula for the probability of error of the MAP decision rule.

3. For p0 = 1/3, λ0 = 2 and λ1 = 10, compute the probability of error of the MAP

decision rule. You may want to use a computer program to do this.

4. Repeat (3) with λ1 = 20 and comment.
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Problem 5. (IID versus First-Order Markov)

Consider testing two equally likely hypotheses H = 0 and H = 1. The observable

Y = (Y1, . . . , Yk) (4)

is a k-dimensional binary vector. Under H = 0 the components of the vector Y are indepen-

dent uniform random variables (also called Bernoulli(1
2
) random variables). Under H = 1,

the component Y1 is also uniform, but the components Yi, 2 ≤ i ≤ k, are distributed as

follows:

Pr(Yi = yi|Yi−1 = yi−1, . . . , Y1 = y1) =

{
3
4
, if yi = yi−1

1
4
, otherwise.

(5)

1. Find the decision rule that minimizes the probability of error. Hint: Write down a

short sample sequence (y1, . . . , yk) and determine its probability under each hypothesis.

Then generalize.

2. Give a simple sufficient statistic for this decision.

3. Suppose that the observed sequence alternates between 0 and 1 except for one string

of ones of length s, i.e. the observed sequence y looks something like

y = 0101010111111 . . . 111111010101 . . . . (6)

What is the least s such that we decide for hypothesis H = 1? Evaluate your formula

for k = 20.

Problem 6. (One Bit over a Binary Channel with Memory)

Consider communicating one bit via n uses of a binary channel with memory. The channel

output Yi at time instant i is given by

Yi = Xi ⊕ Zi i = 1, . . . , n

where Xi is the binary channel input, Zi is the binary noise and ⊕ represents modulo 2

addition. The noise sequence is generated as follows: Z1 is generated from the distribution

Pr(Z1 = 1) = p and for i > 1,

Zi = Zi−1 ⊕Ni

where N2, . . . , Nn are i.i.d. with Pr(Ni = 1) = p. Let the codewords (the sequence of

symbols sent on the channel) corresponding to message 0 and 1 be (X
(0)
1 , . . . , X

(0)
n ) and

(X
(1)
1 , . . . , X

(1)
n ), respectively.
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1. Consider the following operation by the receiver. The receiver creates the vector

(Ŷ1, Ŷ2, . . . , Ŷn)T where Ŷ1 = Y1 and for i = 2, 3, . . . , n, Ŷi = Yi ⊕ Yi−1. Argue that the

vector created by the receiver is a sufficient statistic. Hint: Show that (Y1, Y2, . . . , Yn)>

can be reconstructed from (Ŷ1, Ŷ2, . . . , Ŷn)>.

2. Write down (Ŷ1, Ŷ2, . . . , Ŷn)> for each of the hypotheses. Notice the similarity with the

problem of communicating one bit via n uses of a binary symmetric channel.

3. How should the receiver choose the codewords (X
(0)
1 , . . . , X

(0)
n ) and (X

(1)
1 , . . . , X

(1)
n ) so

as to minimize the probability of error? Hint: When communicating one bit via n uses

of a binary symmetric channel, the probability of error is minimized by choosing two

codewords that differ in each component.
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