ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Solution of Homework 2

Problem 1. (Conditioning Technique)

1. We have

$$
\begin{aligned}
E\{Y \mid N=k\} & =E\left\{E\left\{\sum_{i=1}^{k} X_{i} \mid N=k\right\}\right\} \\
& =E\left\{\sum_{i=1}^{k} E\left\{X_{i} \mid N=k\right\}\right\} \\
& =E\left\{\sum_{i=1}^{k} E\left\{X_{i}\right\}\right\} \\
& =\frac{k}{2}
\end{aligned}
$$

where we used the independence of N and $X_{i}, i=1,2, \ldots, n$. Hence $E\{Y \mid N\}=\frac{N}{2}$ and using the conditioning we have

$$
\begin{aligned}
E\{Y\} & =E\{E\{Y \mid N\}\} \\
& =E\left\{\frac{N}{2}\right\} \\
& =\frac{1}{2} \times \frac{n+1}{2} \\
& =\frac{n+1}{4} .
\end{aligned}
$$

2. Similar to the previous part we have

$$
\begin{aligned}
E\left\{Y^{2} \mid N=k\right\} & =E\left\{\left(\sum_{i=1}^{k} X_{i}\right)^{2} \mid N=k\right\} \\
& =E\left\{\left(\sum_{i=1}^{k} X_{i}\right)^{2}\right\} \\
& =E\left\{X_{1}^{2}+X_{1} X_{2}+\cdots+X_{2}^{2}+X_{1} X_{2}+\ldots\right\} \\
& =E\left\{\sum_{i=1}^{k} X_{i}^{2}+\sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k}\left(X_{i} X_{j}\right)\right\} \\
& =k E\left\{X_{1}^{2}\right\}+k(k-1) E\left\{X_{1}\right\}^{2} \\
& =\frac{k}{3}+\frac{k(k-1)}{4} \\
& =\frac{k^{2}}{4}+\frac{k}{12} .
\end{aligned}
$$

Hence $E\left\{Y^{2} \mid N\right\}=\frac{N^{2}}{4}+\frac{N}{12}$. Taking the expectation with respect to N and using the formulas

$$
\begin{aligned}
\sum_{i=1}^{n} i & =\frac{n(n+1)}{2} \\
\sum_{i=1}^{n} i^{2} & =\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
E\left\{Y^{2}\right\} & =\frac{(n+1)(2 n+1)}{24}+\frac{n+1}{24} \\
& =\frac{(n+1)^{2}}{12}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{var}(Y) & =E\left\{Y^{2}\right\}-E\{Y\}^{2} \\
& =\frac{(n+1)^{2}}{12}-\frac{(n+1)^{2}}{16} \\
& =\frac{(n+1)^{2}}{48}
\end{aligned}
$$

Problem 2. (Conditioning Technique)

1. Given $X=x, Y$ is uniformly distributed between 0 and x hence

$$
f_{Y \mid X}(y \mid x)= \begin{cases}\frac{1}{x} & 0 \leq y \leq x, 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

2. We use the Bayes rule to find the marginal distribution of $Y, f_{Y}(y)=f_{Y \mid X}(y \mid x) f_{X}(x) d x$. Notice that for a specific $Y=y$ the value of X is always greater than y hence we have

$$
\begin{aligned}
f_{Y}(y) & =\int_{y}^{1} f_{Y \mid X}(y \mid x) f_{X}(x) d x \\
& =\int_{y}^{1} \frac{1}{x} d x \\
& =-\log (y),
\end{aligned}
$$

where $y \in[0,1]$ and 0 otherwise. Using the marginal distribution of Y we can obtain the $E\{Y\}$ as follows

$$
\begin{aligned}
E\{Y\} & =\int y f_{Y}(y) d y \\
& =-\int_{0}^{1} y \log (y) d y \\
& \left.=-\frac{y^{2}}{2}\left(\log (y)-\frac{1}{2}\right)\right]_{0}^{1} \\
& =\frac{1}{4}
\end{aligned}
$$

3. We have $E\{Y \mid X=x\}=\frac{x}{2}$. Using the conditioning on $X=x$ we have

$$
\begin{aligned}
E\{Y\} & =E\{E\{Y \mid X\}\} \\
& =E\left\{\frac{X}{2}\right\} \\
& =\frac{1}{2} \times \frac{1}{2}=\frac{1}{4},
\end{aligned}
$$

which is the same as the previous part.
Problem 3. (Conditioning Technique) By Symmetry

$$
\begin{aligned}
E\{Y \mid X+Y=z\} & =E\{X \mid X+Y=z\} \\
& =\frac{1}{2} E\{X+Y \mid X+Y=z\} \\
& =\frac{z}{2}
\end{aligned}
$$

which implies that $E\{X \mid X+Y\}=\frac{X+Y}{2}$.

