ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Principles of Digital Communications:	Assignment da	te: Ma	y 23,	2012
Summer Semester 2012	Due da	te: Ma	y 30,	2012

Homework 14

Problem 1. (Equivalent Representations)

A bandpass signal x(t) may be written as $x(t) = \sqrt{2} \Re\{x_E(t)e^{j2\pi f_0 t}\}$, where $x_E(t)$ is the baseband equivalent of x(t).

- 1. Show that a signal x(t) can also be written as $a(t) \cos[2\pi f_0 t + \theta(t)]$ and describe a(t) and $\theta(t)$ in terms of $x_E(t)$. Interpret this result.
- 2. Show that the signal x(t) can also be written as $x_{EI}(t) \cos 2\pi f_0 t x_{EQ}(t) \sin(2\pi f_0 t)$, and describe $x_{EI}(t)$ and $x_{EQ}(t)$ in terms of $x_E(t)$. (This shows how you can obtain x(t) without doing complex-valued operations.)
- 3. Find the baseband equivalent of the signal $x(t) = A(t)\cos(2\pi f_0 t + \varphi)$, where A(t) is a real-valued lowpass signal.

Problem 2. (Equivalent Baseband Signal)

1. Consider the waveform

$$\psi(t) = \operatorname{sinc}\left(\frac{t}{T}\right)\cos(2\pi f_0 t).$$

What is the equivalent baseband signal of this waveform.

2. Assume that the signal $\psi(t)$ is passed through the filter with impulse response h(t)where h(t) is specified by its baseband equivalent impulse response $h_E(t) = \frac{1}{T\sqrt{2}} \operatorname{sinc}^2\left(\frac{t}{2T}\right)$. What is the output signal, both in passband as well as in baseband? *Hint: The Fourier transform of* $\cos(2\pi f_0 t)$ *is* $\frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)$.

Problem 3. (Bandpass Nyquist Pulses)

Consider a pulse p(t) defined via its Fourier transform $p_{\mathcal{F}}(f)$ as follows:

- 1. What is the expression for p(t)?
- 2. Determine the constant c so that $\psi(t) = cp(t)$ has unit energy.
- 3. Assume that $f_0 \frac{B}{2} = B$ and consider the infinite set of functions \cdots , $\psi(t+T)$, $\psi(t)$, $\psi(t-T)$, $\psi(t-2T)$, \cdots . Do they form an orthonormal set for $T = \frac{1}{2B}$? (Explain).
- 4. Determine all possible values of $f_0 \frac{B}{2}$ so that \cdots , $\psi(t+T)$, $\psi(t)$, $\psi(t-T)$, $\psi(t-2T)$, \cdots forms an orthonormal set for $T = \frac{1}{2B}$.