ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Principles of Digital Communications:
Assignment date: May 23, 2012
Summer Semester 2012
Due date: May 30, 2012

Homework 14

Problem 1. (Equivalent Representations)
A bandpass signal $x(t)$ may be written as $x(t)=\sqrt{2} \Re\left\{x_{E}(t) e^{j 2 \pi f_{0} t}\right\}$, where $x_{E}(t)$ is the baseband equivalent of $x(t)$.

1. Show that a signal $x(t)$ can also be written as $a(t) \cos \left[2 \pi f_{0} t+\theta(t)\right]$ and describe $a(t)$ and $\theta(t)$ in terms of $x_{E}(t)$. Interpret this result.
2. Show that the signal $x(t)$ can also be written as $x_{E I}(t) \cos 2 \pi f_{0} t-x_{E Q}(t) \sin \left(2 \pi f_{0} t\right)$, and describe $x_{E I}(t)$ and $x_{E Q}(t)$ in terms of $x_{E}(t)$. (This shows how you can obtain $x(t)$ without doing complex-valued operations.)
3. Find the baseband equivalent of the signal $x(t)=A(t) \cos \left(2 \pi f_{0} t+\varphi\right)$, where $A(t)$ is a real-valued lowpass signal.

Problem 2. (Equivalent Baseband Signal)

1. Consider the waveform

$$
\psi(t)=\operatorname{sinc}\left(\frac{t}{T}\right) \cos \left(2 \pi f_{0} t\right)
$$

What is the equivalent baseband signal of this waveform.
2. Assume that the signal $\psi(t)$ is passed through the filter with impulse response $h(t)$ where $h(t)$ is specified by its baseband equivalent impulse response $h_{E}(t)=\frac{1}{T \sqrt{2}} \operatorname{sinc}^{2}\left(\frac{t}{2 T}\right)$. What is the output signal, both in passband as well as in baseband?
Hint: The Fourier transform of $\cos \left(2 \pi f_{0} t\right)$ is $\frac{1}{2} \delta\left(f-f_{0}\right)+\frac{1}{2} \delta\left(f+f_{0}\right)$.

Problem 3. (Bandpass Nyquist Pulses)
Consider a pulse $p(t)$ defined via its Fourier transform $p_{\mathcal{F}}(f)$ as follows:

1. What is the expression for $p(t)$?
2. Determine the constant c so that $\psi(t)=c p(t)$ has unit energy.
3. Assume that $f_{0}-\frac{B}{2}=B$ and consider the infinite set of functions $\cdots, \psi(t+T), \psi(t)$, $\psi(t-T), \psi(t-2 T), \cdots$. Do they form an orthonormal set for $T=\frac{1}{2 B}$? (Explain).
4. Determine all possible values of $f_{0}-\frac{B}{2}$ so that $\cdots, \psi(t+T), \psi(t), \psi(t-T), \psi(t-2 T)$, \cdots forms an orthonormal set for $T=\frac{1}{2 B}$.
