ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Principles of Digital Communications:	Assignment date:	May 2	3, 2012
Summer Semester 2012	Due date:	May 3	0, 2012

Solution of Homework 14

Problem 1. (Equivalent Representation)

1. Let $x_E(t) = \alpha(t) \exp[j\beta(t)]$. Then

$$\begin{aligned} x(t) &= \sqrt{2} \Re\{x_E(t) \exp[j2\pi f_0 t]\} \\ &= \sqrt{2} \Re\{\alpha(t) \exp[j\beta(t)] \exp[j2\pi f_0 t]\} \\ &= \sqrt{2} \Re\{\alpha(t) \exp[j(2\pi f_0 t + \beta(t))]\} \\ &= \sqrt{2} \alpha(t) \cos[2\pi f_0 t + \beta(t)]. \end{aligned}$$

We thus have

$$a(t) = \sqrt{2\alpha(t)} = \sqrt{2}|x_E(t)|$$

and

$$\theta(t) = \beta(t) = \tan^{-1} \frac{\Im\{x_E(t)\}}{\Re\{x_E(t)\}}.$$

This shows that a bandpass signal is one that is modulated both in amplitude and in phase.

2. Let $x_E(t) = x_R(t) + jx_I(t)$. Then

$$\begin{aligned} x(t) &= \sqrt{2\Re} \{ x_E(t) \exp[j2\pi f_0 t] \} \\ &= \sqrt{2\Re} \{ [x_R(t) + jx_I(t)] \exp[j2\pi f_0 t] \} \\ &= \sqrt{2} [x_R(t) \cos(2\pi f_0 t) - x_I(t) \sin(2\pi f_0 t)]. \end{aligned}$$

Hence we have

 $x_{EI}(t) = \sqrt{2}\Re\{x_E(t)\}$

and

$$x_{EQ}(t) = \sqrt{2\Im\{x_E(t)\}}.$$

3. We guess that

$$x_E(t) = \frac{A(t)}{\sqrt{2}} \exp(j\varphi).$$

Indeed

$$\begin{aligned} x(t) &= \sqrt{2} \Re\{x_E(t) \exp(j2\pi f_0 t)\} \\ &= \sqrt{2} \Re\{\frac{A(t)}{\sqrt{2}} \exp(j\varphi) \exp(j2\pi f_0 t)\} \\ &= \Re\{A(t) \exp[j(2\pi f_0 t + \varphi)]\} \\ &= A(t) \cos(2\pi f_0 t + \varphi). \end{aligned}$$

Problem 2. (Equivalent Baseband Signal)

- 1. It is immediate to verify that $\psi_E(t) = \frac{1}{\sqrt{2}} \operatorname{sinc}(\frac{t}{T})$ leads to the $\psi(t) = \sqrt{2} \Re\{\psi_E(t)e^{j2\pi f_0 t}\}$ given in the problem formulation.
- 2. We have the baseband representation of the signal ψ and filter h so we can do the filtering operation in the equivalent baseband representation. The Fourier transform of $\operatorname{sinc}(\frac{t}{2T})$ is a rectangular shaped pulse in $f \in [-\frac{1}{4T}, \frac{1}{4T}]$ hence the Fourier transform of $\operatorname{sinc}(\frac{t}{2T})$ is the convolution of the Fourier transform of $\operatorname{sinc}(\frac{t}{2T})$ with itself which is a triangular shaped waveform in $f \in [-\frac{1}{2T}, \frac{1}{2T}]$ and over this range of frequency the Fourier transform of $\psi_E(t) = \operatorname{sinc}(\frac{t}{T})$ is uniform with amplitude T and a simple drawing in the frequency domain shows that $\psi_E(t) \star h_E(t) = Th_E(t) = \frac{1}{\sqrt{2}}\operatorname{sinc}^2(\frac{t}{2T})$.
- 3. The equivalent passband signal is $\frac{1}{\sqrt{2}}\operatorname{sinc}^2(\frac{t}{2T})\cos(2\pi f_0 t)$.

Problem 3. (Bandpass Nyquist Pulses)

- 1. From the frequency domain it is seen that $p_{\mathcal{F}}(f) = g(f) \star \{\frac{1}{2}\delta(f f_0) + \frac{1}{2}\delta(f + f_0)\}$ where $g(f) = \begin{cases} 2 & -\frac{B}{2} \leq f \leq \frac{B}{2} \\ 0 & \text{otherwise} \end{cases} g(f)$ is the Fourier transform of 2B sinc(Bt) and $\frac{1}{2}\delta(f f_0) + \frac{1}{2}\delta(f + f_0)$ is the Fourier transform of $\cos(2\pi f_0 t)$. Hence $p(t) = 2B \operatorname{sinc}(Bt) \cos(2\pi f_0 t)$.
- 2. We have

$$\int \psi^2(t)dt = c^2 \int p^2(t)dt$$
$$= c^2 \int p_F^2(f)df$$
$$= 2c^2 B = 1$$

which gives $c = \frac{1}{\sqrt{2B}}$.

3. $\{\psi(t-nT)\}\$ forms an orthonormal set for $T = \frac{1}{2B}$ if and only if the Nyquist condition holds. In other words

$$\sum \psi_{\mathcal{F}}^2 (f - \frac{n}{T}) = T.$$

A simple drawing of the frequency domain shows that Nyquist condition holds and so $\psi(t)$ is a Nyquist pulse.

4. Once again, we are looking for the values of $f_0 - \frac{B}{2}$ for which the above expression holds. A simple drawing shows that it is the case for $f_0 - \frac{B}{2} = kB$ where k is an integer.