ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Solution of Homework 14

Problem 1. (Equivalent Representation)

1. Let $x_{E}(t)=\alpha(t) \exp [j \beta(t)]$. Then

$$
\begin{aligned}
x(t) & =\sqrt{2} \Re\left\{x_{E}(t) \exp \left[j 2 \pi f_{0} t\right]\right\} \\
& =\sqrt{2} \Re\left\{\alpha(t) \exp [j \beta(t)] \exp \left[j 2 \pi f_{0} t\right]\right\} \\
& =\sqrt{2} \Re\left\{\alpha(t) \exp \left[j\left(2 \pi f_{0} t+\beta(t)\right)\right]\right\} \\
& =\sqrt{2} \alpha(t) \cos \left[2 \pi f_{0} t+\beta(t)\right] .
\end{aligned}
$$

We thus have

$$
a(t)=\sqrt{2} \alpha(t)=\sqrt{2}\left|x_{E}(t)\right|
$$

and

$$
\theta(t)=\beta(t)=\tan ^{-1} \frac{\Im\left\{x_{E}(t)\right\}}{\Re\left\{x_{E}(t)\right\}} .
$$

This shows that a bandpass signal is one that is modulated both in amplitude and in phase.
2. Let $x_{E}(t)=x_{R}(t)+j x_{I}(t)$. Then

$$
\begin{aligned}
x(t) & =\sqrt{2} \Re\left\{x_{E}(t) \exp \left[j 2 \pi f_{0} t\right]\right\} \\
& =\sqrt{2} \Re\left\{\left[x_{R}(t)+j x_{I}(t)\right] \exp \left[j 2 \pi f_{0} t\right]\right\} \\
& =\sqrt{2}\left[x_{R}(t) \cos \left(2 \pi f_{0} t\right)-x_{I}(t) \sin \left(2 \pi f_{0} t\right)\right] .
\end{aligned}
$$

Hence we have

$$
x_{E I}(t)=\sqrt{2} \Re\left\{x_{E}(t)\right\}
$$

and

$$
x_{E Q}(t)=\sqrt{2} \Im\left\{x_{E}(t)\right\} .
$$

3. We guess that

$$
x_{E}(t)=\frac{A(t)}{\sqrt{2}} \exp (j \varphi)
$$

Indeed

$$
\begin{aligned}
x(t) & =\sqrt{2} \Re\left\{x_{E}(t) \exp \left(j 2 \pi f_{0} t\right)\right\} \\
& =\sqrt{2} \Re\left\{\frac{A(t)}{\sqrt{2}} \exp (j \varphi) \exp \left(j 2 \pi f_{0} t\right)\right\} \\
& =\Re\left\{A(t) \exp \left[j\left(2 \pi f_{0} t+\varphi\right)\right]\right\} \\
& =A(t) \cos \left(2 \pi f_{0} t+\varphi\right)
\end{aligned}
$$

Problem 2. (Equivalent Baseband Signal)

1. It is immediate to verify that $\psi_{E}(t)=\frac{1}{\sqrt{2}} \operatorname{sinc}\left(\frac{t}{T}\right)$ leads to the $\psi(t)=\sqrt{2} \Re\left\{\psi_{E}(t) e^{j 2 \pi f_{0} t}\right\}$ given in the problem formulation.
2. We have the baseband representation of the signal ψ and filter h so we can do the filtering operation in the equivalent baseband representation. The Fourier transform of $\operatorname{sinc}\left(\frac{t}{2 T}\right)$ is a rectangular shaped pulse in $f \in\left[-\frac{1}{4 T}, \frac{1}{4 T}\right]$ hence the Fourier transform of $\operatorname{sinc}^{2}\left(\frac{t}{2 T}\right)$ is the convolution of the Fourier transform of $\operatorname{sinc}\left(\frac{t}{2 T}\right)$ with itself which is a triangular shaped waveform in $f \in\left[-\frac{1}{2 T}, \frac{1}{2 T}\right]$ and over this range of frequency the Fourier transform of $\psi_{E}(t)=\operatorname{sinc}\left(\frac{t}{T}\right)$ is uniform with amplitude T and a simple drawing in the frequency domain shows that $\psi_{E}(t) \star h_{E}(t)=T h_{E}(t)=\frac{1}{\sqrt{2}} \operatorname{sinc}^{2}\left(\frac{t}{2 T}\right)$.
3. The equivalent passband signal is $\frac{1}{\sqrt{2}} \operatorname{sinc}^{2}\left(\frac{t}{2 T}\right) \cos \left(2 \pi f_{0} t\right)$.

Problem 3. (Bandpass Nyquist Pulses)

1. From the frequency domain it is seen that $p_{\mathcal{F}}(f)=g(f) \star\left\{\frac{1}{2} \delta\left(f-f_{0}\right)+\frac{1}{2} \delta(f+\right.$ $\left.\left.f_{0}\right)\right\}$ where $g(f)=\left\{\begin{array}{ll}2 & -\frac{B}{2} \leq f \leq \frac{B}{2} \\ 0 & \text { otherwise }\end{array} \quad g(f)\right.$ is the Fourier transform of $2 B \operatorname{sinc}(B t)$ and $\frac{1}{2} \delta\left(f-f_{0}\right)+\frac{1}{2} \delta\left(f+f_{0}\right)$ is the Fourier transform of $\cos \left(2 \pi f_{0} t\right)$. Hence $p(t)=$ $2 B \operatorname{sinc}(B t) \cos \left(2 \pi f_{0} t\right)$.
2. We have

$$
\begin{aligned}
\int \psi^{2}(t) d t & =c^{2} \int p^{2}(t) d t \\
& =c^{2} \int p_{\mathcal{F}}^{2}(f) d f \\
& =2 c^{2} B=1
\end{aligned}
$$

which gives $c=\frac{1}{\sqrt{2 B}}$.
3. $\{\psi(t-n T)\}$ forms an orthonormal set for $T=\frac{1}{2 B}$ if and only if the Nyquist condition holds. In other words

$$
\sum \psi_{\mathcal{F}}^{2}\left(f-\frac{n}{T}\right)=T
$$

A simple drawing of the frequency domain shows that Nyquist condition holds and so $\psi(t)$ is a Nyquist pulse.
4. Once again, we are looking for the values of $f_{0}-\frac{B}{2}$ for which the above expression holds. A simple drawing shows that it is the case for $f_{0}-\frac{B}{2}=k B$ where k is an integer.

