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Solution of Homework 11

Problem 1. It’s about the project.

Problem 2. (Power Spectral Density)

1. Trivially, we find that when i = j, E[XiXj] is

E[X2
i ] = E[1] = 1.

Remember that the Di are i.i.d Bernoulli(1
2
) random variables. Hence, we find imme-

diately

E[X2nX2n+1] = E[DnDn−2DnDn−1Dn−2]

= E[D2
nDn−1D

2
n−2]

= E[Dn−1] = 0,

and also

E[X2nX2n+2] = E[DnDn−2Dn+1Dn−1]

= E[Dn]E[Dn−2]E[Dn+1]E[Dn−1] = 0

By continuing this argument we find

E[XiXj] = δ[i− j],

thus the sequence Xi is wide-sense stationary with autocorrelation function

RX [i− j] = E[XiXj] = δ[i− j].



2. From the Appendix of Chapter 5, we already know that:

RX̃(τ) = E[X̃(t)X̃(t+ τ)]

= Es E[
∞∑

i=−∞

∞∑
j=−∞

XiXjψ(t− iTs − T0)ψ(t− jTs − T0 + τ)]

= Es

∞∑
i=−∞

∞∑
j=−∞

E[XiXjψ(t− iTs − T0)ψ(t− jTs − T0 + τ)]

= Es

∞∑
i=−∞

∞∑
j=−∞

E[XiXj] E[ψ(t− iTs − T0)ψ(t− jTs − T0 + τ)]

The second expectation is over the random variable T0, which is uniformly distributed

over the interval [0, Ts). Therefore, simply by the definition of expectation, we get

E[ψ(t− iTs − T0)ψ(t− jTs − T0 + τ)] =

∫ Ts

0

1

Ts
ψ(t− iTs − t0)ψ(t− jTs − t0 + τ)dt0

Moreover, since E[XiXj] = δ[i− j], we can write

RX̃(τ) = Es

∞∑
i=−∞

E[ψ(t− iTs − T0)ψ(t− iTs − T0 + τ)]

= Es

∞∑
i=−∞

∫ Ts

0

1

Ts
ψ(t− iTs − t0)ψ(t− iTs − t0 + τ)dt0

Define α = t − iTs − t0, and substitute t0 by α in the integral (note that t is just a

constant in our computation):

RX̃(τ) = Es

∞∑
i=−∞

∫ t−(i+1)Ts

t−iTs

1

Ts
ψ(α)ψ(α + τ)(−dα)

= Es

∞∑
i=−∞

∫ t−iTs

t−(i+1)Ts

1

Ts
ψ(α)ψ(α + τ)dα.

At this point, the constant t drops out: irrespective of the value of t, the sum of

integrals just corresponds to the integral from −∞ to ∞, that is

RX̃(τ) =
Es
Ts

∫ ∞
−∞

ψ(α)ψ(α + τ)dα

= EsRψ(τ)

3. The power spectral density is the Fourier transform of the autocorrelation function.

Thus, the power spectral density of the signal X̃(t) is essentially the same as the power

spectral density of the signal ψ(t),

SX̃(f) = EsSψ(f).
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This means that by choosing ψ(t) appropriately, we can control the bandwidth con-

sumption of our communications scheme.

4. We first compute the autocorrelation function of ψ(t):

Rψ(τ) =
1

Ts

∫ ∞
−∞

ψ(α)ψ(τ + α)dα

=

{
1
Ts

(
1− |τ |

Ts

)
, |τ | ≤ Ts

0, otherwise
(1)

where we used the fact that ψ(α)ψ(τ + α) vanishes when |τ | > Ts and is a rectangle

of width Ts − |τ | and height 1
Ts

otherwise.

We then take the Fourier transform of Rψ(τ) to obtain Sψ(f). For this, note that

Rψ(τ) =
1

Ts

∫ ∞
−∞

ψ(α)ψ(α + τ)dα

=
1

Ts

∫ ∞
−∞

ψ(u)ψ(τ − u)du

=
1

Ts
ψ(t) ∗ ψ(−t)

=
1

Ts
ψ(t) ∗ ψ(t),

where we used the variable change u = −α and the fact that ψ(t) is an even function.

Hence, Rψ(τ) is the convolution of ψ with itself. It follows that the Fourier transform

of Rψ(τ) is the Fourier transform of ψ times itself, i.e.,

Sψ(f) = sinc2(Tsf).

It follows that

SX̃(f) = Es sinc2(Tsf).

Problem 3. (Trellis Section)

We have the following trellis diagram:

STATE

−1,−1

1,−1

−1, 1

1, 1 1|1, 1

−1| − 1, 1

−1|1,−1

1| − 1,−1

−1|1,−1 1| − 1,−1

−1| − 1, 1
1|1, 1
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Problem 4. (Branch Metric)

For the given trellis diagram, edges are labeled by the output values of the encoder. For

example if we are in state (−1,−1) we can go to the state (−1,−1) and the corresponding

output of the encoder will be (1,−1). We also know that for AWGN channel the suitable

branch metric is the quadratic metric, i.e. if the edges are labeled by the (x2n, x2n+1) and the

received values at the output of match filter are (y2n, y2n+1) then the corresponding branch

metric is the inner product x2ny2n + x2n+1y2n+1 because all of the inputs have the same

energy. Hence for the special output (1,−2) in this problem we have the following trellis

labelled by the branch metrics.

STATESTATE

−1,−1

1,−1

−1, 1

1, 1 −1

−1

3

3

1 1

−3
−3

−1,−1

1,−1

−1, 1

1, 1 1, 1

1, 1

1,−1

1,−1

−1,−1
−1,−1

−1, 1−1, 1

Problem 5. (Viterbi Algorithm)

The path in bold corresponds to the ML path to the terminating state. A short arrow (in

red) indicates the ML path up to the head of the arrow. Values in bold on the state indicate

the value of the ML path until the state.

STATE

−1

1 −23

−3

−1

2

1

−1

1

−2

−2

2

2

5

2

3

−3

0 3 1 2 10 12

−3 5 8 6

Problem 6. (Intersymbol Interference)

1. We have

Si =
∞∑
j=0

Ui−jhj, i = 1, 2, . . .

= Uih0 + Ui−1h1

= Ui − 2Ui−1.
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Ui−1

0| − 2

1|1

0|0

1| − 1

0

1

0

1

Ui

2. We have the following diagram for state transition:

3. We have Y = S + Z, where Z = (Z1, . . . , Z6) is a sequence of i.i.d. components with

Zi ∼ N (0, σ2). Assuming that U ∼ Bern(1/2), each of the possible sequence S is

equiprobable. Thus our maximum likelihood decoder is a minimum distance decoder

(Refer to lecture notes). Hence we have to minimize ||y−s||2 or equivalently, maximize

2 < y, s > −||s||2. We thus have f(s, y) =
∑6

i=1 2yisi − s2i whose maximization with

respect to s leads to a maximum likelihood decision on S.

4. Tracing our path through the trellis, we find that the maximum likelihood estimate of

the information sequence is U = (1, 1, 0, 1, 1, 1).

1

0

Ui−1

3 2

2 2

3 2

0

3

20

3

20

5


