ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

Solution of Homework 10

Problem 1. (Suggestions for the Project)

Modulation Selection:

1.

$$
H(f)=\sum_{k=1}^{K} \alpha_{k} e^{j 2 \pi f \tau_{k}}
$$

2.

$$
|H(f)|=\frac{\sqrt{101+20 \cos (2 \pi f T)}}{11}
$$

The maxima happens at frequencies $f_{n}=\frac{n}{T}$ and the minima happens at $f_{n}=\frac{2 n+1}{2 T}$ where n is an integer.
3. The maximum attenuation is $|H|=0.9$ and occurs at $f_{n}=\frac{2 n+1}{2 T}$ for integer values of n.
4. If the transmitted power is P in the worst case the received power will be $|H|_{\min }^{2} \times P=$ $0.81 P$. This value must be greater than 1 W . This implies that the transmitted power must be greater than $\frac{100}{81} \approx 1.25 \mathrm{~W}$.
5. Using Fourier analysis we can simply show that

$$
\begin{aligned}
A^{\prime} & =A \times A(f) \\
f^{\prime} & =f \\
\phi^{\prime} & =\phi+\theta(f),
\end{aligned}
$$

and we see that the random behavior of the channel doesn't change the received frequency.

A small thinking show that the MFSK is the best and simplest modulation because it puts the information on a component of the signal which is not effected by the random nature of the channel.

Random Phase Compensation:

1. A simple use of the hint gives the result.
2. Simple.
3. Simple.
4.

$$
\begin{aligned}
p\left(r_{0}, r_{1}, \ldots \mid H=i\right) & =\int p\left(r_{0}, r_{1}, \ldots \mid H=i, \phi\right) \frac{d \phi}{2 \pi} \\
& =\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)^{N_{s}}}} \exp \left(-\frac{\sum_{n} r_{n}^{2}}{2 \sigma^{2}}-\frac{N_{s} A^{2}}{4 \sigma^{2}}+\frac{A}{\sigma^{2}} \sqrt{r_{i c}^{2}+r_{i s}^{2}} \cos (\phi)\right) \frac{d \phi}{2 \pi} \\
& =\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)^{N_{s}}}} \exp \left(-\frac{\sum_{n} r_{n}^{2}}{2 \sigma^{2}}-\frac{N_{s} A^{2}}{4 \sigma^{2}}\right) I_{0}\left(\frac{A}{\sigma^{2}} \sqrt{r_{i c}^{2}+r_{i s}^{2}}\right)
\end{aligned}
$$

5. The first part of the probability distribution $\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)^{N_{s}}}} \exp \left(-\frac{\sum_{n} r_{n}^{2}}{2 \sigma^{2}}-\frac{N_{s} A^{2}}{4 \sigma^{2}}\right)$ is the same in both expression $i=0,1$ so we can simply drop it. Hence the MAP rule can be simply written as

$$
I_{0}\left(\frac{A}{\sigma^{2}} \sqrt{r_{0 c}^{2}+r_{0 s}^{2}}\right)<>I_{0}\left(\frac{A}{\sigma^{2}} \sqrt{r_{1 c}^{2}+r_{1 s}^{2}}\right)
$$

6. As $I_{0}(x)$ is a monotone increasing function for $x>0$ then the comparison of $I_{0}(x)$ values ends up in comparison of the arguments. In other words, the MAP rule can be simplified as

$$
\left.\sqrt{r_{0 c}^{2}+r_{0 s}^{2}}\right)<>\sqrt{r_{1 c}^{2}+r_{1 s}^{2}} .
$$

7. It is easy to check that $\Re\left(R\left[f_{i}\right]\right)=r_{i c}$ and $\Im\left(R\left[f_{i}\right]\right)=r_{i s}$. Hence taking the amplitude
 implement the receiver in the DFT domain using the FFT algorithm.

Problem 2. Nyquist Criterion

To qualify as Nyquist pulses for symbol rate $1 / T$, they have to verify the following condition:

$$
\begin{equation*}
\sum\left|\theta_{\mathcal{F}}(f+k / T)\right|^{2}=T \tag{1}
\end{equation*}
$$

By simply plotting the shifted functions and adding up, one immediately verifies that (a) and (c) are Nyquist pulses of symbol rate $1 / T$, but (b) is not.

For (d), we verify in the time domain. We know that $\theta_{\mathcal{F}}(f)$ is a sinc function. Therefore, $\theta(t)$ is a box function. The first zero of the sinc is a $1 / T$, which means that the width of the corresponding box function is T. So it is immediately clear that $\theta(t)$ is a Nyquist pulse for symbol rate $1 / T$ since $\theta(t)$ is orthogonal to $\theta(t-i T)$ for all i.
2. For instance, a triangle of height 1 going from -1 to 1 in the frequency domain.
3. The block diagram is just the same as always. Suppose that we have a Nyquist pulse $\theta(t)$ and a sequence of input symbols $\left\{X_{i}\right\}$. The transmitted signal is (as usual)

$$
\begin{equation*}
x(t)=\sum_{i=-\infty}^{\infty} X_{i} \theta\left(t-i T_{s}\right) . \tag{2}
\end{equation*}
$$

At the output of the matched filter at time $j T_{s}$, we have the value Y_{j} determined as follows:

$$
\begin{align*}
Y_{j} & =\int_{-\infty}^{\infty} R(t) \theta\left(t-j T_{s}\right) d t \tag{3}\\
& =\sum_{i=-\infty}^{\infty} X_{i} \int_{-\infty}^{\infty} \theta\left(t-i T_{s}\right) \theta\left(t-j T_{s}\right) d t+\int_{-\infty}^{\infty} Z(t) \theta\left(t-j T_{s}\right) d t \tag{4}\\
& =\sum_{i=-\infty}^{\infty} X_{i} \delta_{i j}+Z_{j}=X_{j}+Z_{j}, \tag{5}
\end{align*}
$$

where $Z(t)$ is the additive noise process.
Suppose we use a non-Nyquist pulse instead. That is, the pulse is not orthogonal to its shift by multiples of T_{s}. But then, the value Y_{j} computed above will not depend only on X_{j}, but on other members of the sequence $\left\{X_{i}\right\}$, too. Thus, we have inter symbol interference. Furthermore, $\left\{Z_{j}\right\}_{j=-\infty}^{\infty}$ is not an i.i.d. sequence unless $\{\psi(t-j T)\}_{j=-\infty}^{\infty}$ is an orthogonal sequence.

Problem 3. (Mixed Questions)

1. We use the Fourier transform property, namely, multiplication in the time domain is equivalent to convolution in the frequency domain. The Fourier transform of $\frac{\sin (\pi t)}{\pi t}$ is a rectangular pulse with amplitude 1 in $f \in\left[-\frac{1}{2}, \frac{1}{2}\right]$. Hence, the Fourier transform of $\left(\frac{\sin (\pi t)}{\pi t}\right)^{2}$ is the convolution of the rectangular pulse with itself which will be a triangular pulse with peak value 1 at $f=0$ and with support $f \in[-1,1]$. The Fourier transform of $\cos (2 \pi t)$ is $\frac{1}{2} \delta(f-1)+\frac{1}{2} \delta(f+1)$. Hence the Fourier transform of $x(t)$ will be the convolution of the Fourier transform of $\cos (2 \pi t)$ with the triangular pulse. A simple drawing of the frequency domain shows that the $x_{\mathcal{F}}(f)$ is two triangular pulses, both of them have peak value $\frac{1}{2}$. One of them has the support $f \in[-2,0]$ and the other in $f \in[0,2]$. As $x_{\mathcal{F}}$ is a base band signal with bandwidth 4 then the maximum sampling time possible to avoid aliasing is $\frac{1}{4}$.
2. It is easy to see that $\int_{0}^{1} s_{1}(t) s_{2}(t) d t=0$ hence s_{1} and s_{2} are orthogonal and the dimension of the signal set is at least two. Furthermore, we can write $s_{3}(t)=\sin ^{2}(\pi t)=$ $\frac{1-\cos (2 \pi t)}{2}=\frac{1}{2} s_{1}(t)-\frac{1}{2} s_{2}(t)$. Hence the dimensionality of the signal set is two.
3. It is easy to check that $p(t)$ meets the Nyquist criterion. In other words, a simple drawing of the frequency domain shows that $\frac{1}{T} \sum\left|p_{\mathcal{F}}\left(f-\frac{n}{T}\right)\right|^{2}=1$. Hence $p(t)$ is
orthogonal to its shifted versions by an integer multiple of T. In other words $\int p(t) p(t-$ $n T) d t=0, \quad n \neq 0$. Hence $\int p(t) p(t-3 T) d t=0$.

Problem 4. (Power Spectrum: Manchester Pulse)

1. $r(t)$ is a rectangular pulse in the time domain hence its Fourier transform is sinc. Specifically, $r_{\mathcal{F}}(f)=\frac{\operatorname{sinc}\left(\frac{\pi f T_{s}}{2}\right)}{\pi f \sqrt{T_{s}}}$.
2. We can write $\phi(t)$ as $r(t) \star\left(\delta\left(t-\frac{T_{s}}{4}\right)-\delta\left(t-\frac{3 T_{s}}{4}\right)\right)$. Hence using the fact that convolution in the time domain is equivalent to multiplication in the frequency domain we have:

$$
\begin{aligned}
\phi_{\mathcal{F}}(f) & =\left(\exp \left(-j 2 \pi f \frac{T_{s}}{4}\right)-\exp \left(-j 2 \pi f \frac{3 T_{s}}{4}\right)\right) r_{\mathcal{F}}(f) \\
& =2 j \exp \left(-j \pi f T_{s}\right) \sin \left(\frac{\pi f T_{s}}{2}\right) \times \frac{\sin \left(\frac{\pi f T_{s}}{2}\right)}{\sqrt{T_{s}} \pi f} \\
& =2 j \exp \left(-j \pi f T_{s}\right) \frac{\sin ^{2}\left(\frac{\pi f T_{s}}{2}\right)}{\sqrt{T_{s} \pi f}}
\end{aligned}
$$

Hence

$$
\left|\phi_{\mathcal{F}}(f)\right|^{2}=4 \frac{\sin ^{4}\left(\frac{\pi f T_{s}}{2}\right)}{T_{s} \pi^{2} f^{2}}
$$

3. $\left\{X_{i}\right\}$ are i.i.d random variables with mean zero. Hence $E\left\{X_{i} X_{j}\right\}=0, \quad i \neq j$ and $E\left\{X_{i}^{2}\right\}=E_{s}$ so we can write $R_{X}[k]=E_{s} \delta[k]$ where $\delta[k]=\left\{\begin{array}{cc}1 & k=0 \\ 0 & \text { otherwise }\end{array}\right.$. Hence in the summation $\sum R_{X}[k] e^{-j 2 \pi k f T_{s}}$ only the term corresponding to $k=0$ remains which is equal to E_{s}. Putting together we have:

$$
S_{X}(f)=E_{s} \frac{\sin ^{4}\left(\frac{\pi f T_{s}}{2}\right)}{\left(\frac{\pi f T_{s}}{2}\right)^{2}}
$$

