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Solution of Homework 10

Problem 1. (Suggestions for the Project)

Modulation Selection:

1.

H(f) =
K∑
k=1

αke
j2πfτk

2.

|H(f)| =
√

101 + 20 cos(2πfT )

11
.

The maxima happens at frequencies fn = n
T

and the minima happens at fn = 2n+1
2T

where n is an integer.

3. The maximum attenuation is |H| = 0.9 and occurs at fn = 2n+1
2T

for integer values of

n.

4. If the transmitted power is P in the worst case the received power will be |H|2min×P =

0.81P . This value must be greater than 1W. This implies that the transmitted power

must be greater than 100
81
≈ 1.25W.

5. Using Fourier analysis we can simply show that

A′ = A× A(f)

f ′ = f

φ′ = φ+ θ(f),

and we see that the random behavior of the channel doesn’t change the received fre-

quency.



A small thinking show that the MFSK is the best and simplest modulation because it puts

the information on a component of the signal which is not effected by the random nature of

the channel.

Random Phase Compensation:

1. A simple use of the hint gives the result.

2. Simple.

3. Simple.

4.

p(r0, r1, . . . |H = i) =

∫
p(r0, r1, . . . |H = i, φ)

dφ

2π

=
1√

(2πσ2)Ns
exp(−

∑
n r

2
n

2σ2
− NsA

2

4σ2
+
A

σ2

√
r2ic + r2is cos(φ))

dφ

2π

=
1√

(2πσ2)Ns
exp(−

∑
n r

2
n

2σ2
− NsA

2

4σ2
)I0(

A

σ2

√
r2ic + r2is)

5. The first part of the probability distribution 1√
(2πσ2)Ns

exp(−
∑
n r

2
n

2σ2 − NsA2

4σ2 ) is the same

in both expression i = 0, 1 so we can simply drop it. Hence the MAP rule can be

simply written as

I0(
A

σ2

√
r20c + r20s) <> I0(

A

σ2

√
r21c + r21s).

6. As I0(x) is a monotone increasing function for x > 0 then the comparison of I0(x)

values ends up in comparison of the arguments. In other words, the MAP rule can be

simplified as √
r20c + r20s) <>

√
r21c + r21s.

7. It is easy to check that <(R[fi]) = ric and =(R[fi]) = ris. Hence taking the amplitude

of the complex number R[fi] we obtain
√
r2ic + r2is. This implies that we can simply

implement the receiver in the DFT domain using the FFT algorithm.

Problem 2. Nyquist Criterion

2
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To qualify as Nyquist pulses for symbol rate 1/T , they have to verify the following

condition: ∑
|θF(f + k/T )|2 = T. (1)

By simply plotting the shifted functions and adding up, one immediately verifies that

(a) and (c) are Nyquist pulses of symbol rate 1/T , but (b) is not.

For (d), we verify in the time domain. We know that θF(f) is a sinc function. Therefore,

θ(t) is a box function. The first zero of the sinc is a 1/T , which means that the width

of the corresponding box function is T . So it is immediately clear that θ(t) is a Nyquist

pulse for symbol rate 1/T since θ(t) is orthogonal to θ(t− iT ) for all i.

2. For instance, a triangle of height 1 going from −1 to 1 in the frequency domain.
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3. The block diagram is just the same as always. Suppose that we have a Nyquist pulse

θ(t) and a sequence of input symbols {Xi}. The transmitted signal is (as usual)

x(t) =
∞∑

i=−∞

Xiθ(t− iTs). (2)

At the output of the matched filter at time jTs, we have the value Yj determined as

follows:

Yj =

∫ ∞
−∞

R(t)θ(t− jTs)dt (3)

=
∞∑

i=−∞

Xi

∫ ∞
−∞

θ(t− iTs)θ(t− jTs)dt +

∫ ∞
−∞

Z(t)θ(t− jTs)dt (4)

=
∞∑

i=−∞

Xiδij + Zj = Xj + Zj, (5)

where Z(t) is the additive noise process.

Suppose we use a non-Nyquist pulse instead. That is, the pulse is not orthogonal to its

shift by multiples of Ts. But then, the value Yj computed above will not depend only

on Xj, but on other members of the sequence {Xi}, too. Thus, we have inter symbol

interference. Furthermore, {Zj}∞j=−∞ is not an i.i.d. sequence unless {ψ(t− jT )}∞j=−∞
is an orthogonal sequence.

Problem 3. (Mixed Questions )

1. We use the Fourier transform property, namely, multiplication in the time domain is

equivalent to convolution in the frequency domain. The Fourier transform of sin(πt)
πt

is

a rectangular pulse with amplitude 1 in f ∈ [−1
2
, 1
2
]. Hence, the Fourier transform of

( sin(πt)
πt

)2 is the convolution of the rectangular pulse with itself which will be a triangular

pulse with peak value 1 at f = 0 and with support f ∈ [−1, 1]. The Fourier transform

of cos(2πt) is 1
2
δ(f − 1) + 1

2
δ(f + 1). Hence the Fourier transform of x(t) will be the

convolution of the Fourier transform of cos(2πt) with the triangular pulse. A simple

drawing of the frequency domain shows that the xF(f) is two triangular pulses, both

of them have peak value 1
2
. One of them has the support f ∈ [−2, 0] and the other in

f ∈ [0, 2]. As xF is a base band signal with bandwidth 4 then the maximum sampling

time possible to avoid aliasing is 1
4
.

2. It is easy to see that
∫ 1

0
s1(t)s2(t)dt = 0 hence s1 and s2 are orthogonal and the

dimension of the signal set is at least two. Furthermore, we can write s3(t) = sin2(πt) =
1−cos(2πt)

2
= 1

2
s1(t)− 1

2
s2(t). Hence the dimensionality of the signal set is two.

3. It is easy to check that p(t) meets the Nyquist criterion. In other words, a simple

drawing of the frequency domain shows that 1
T

∑
|pF(f − n

T
)|2 = 1. Hence p(t) is
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orthogonal to its shifted versions by an integer multiple of T . In other words
∫
p(t)p(t−

nT )dt = 0, n 6= 0. Hence
∫
p(t)p(t− 3T )dt = 0.

Problem 4. (Power Spectrum: Manchester Pulse)

1. r(t) is a rectangular pulse in the time domain hence its Fourier transform is sinc.

Specifically, rF(f) =
sinc(πfTs

2
)

πf
√
Ts

.

2. We can write φ(t) as r(t)?(δ(t− Ts
4

)−δ(t− 3Ts
4

)). Hence using the fact that convolution

in the time domain is equivalent to multiplication in the frequency domain we have:

φF(f) = (exp(−j2πf Ts
4

)− exp(−j2πf 3Ts
4

))rF(f)

= 2j exp(−jπfTs) sin(
πfTs

2
)×

sin(πfTs
2

)
√
Tsπf

= 2j exp(−jπfTs)
sin2(πfTs

2
)

√
Tsπf

Hence

|φF(f)|2 = 4
sin4(πfTs

2
)

Tsπ2f 2

3. {Xi} are i.i.d random variables with mean zero. Hence E{XiXj} = 0, i 6= j and

E{X2
i } = Es so we can write RX [k] = Esδ[k] where δ[k] =

{
1 k = 0

0 otherwise
. Hence in

the summation
∑
RX [k]e−j2πkfTs only the term corresponding to k = 0 remains which

is equal to Es. Putting together we have:

SX(f) = Es
sin4(πfTs

2
)

(πfTs
2

)2
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